

Using Containers on Theta

Murat Keçeli SIMULATION.DATA.LEARNING WORKSHOP

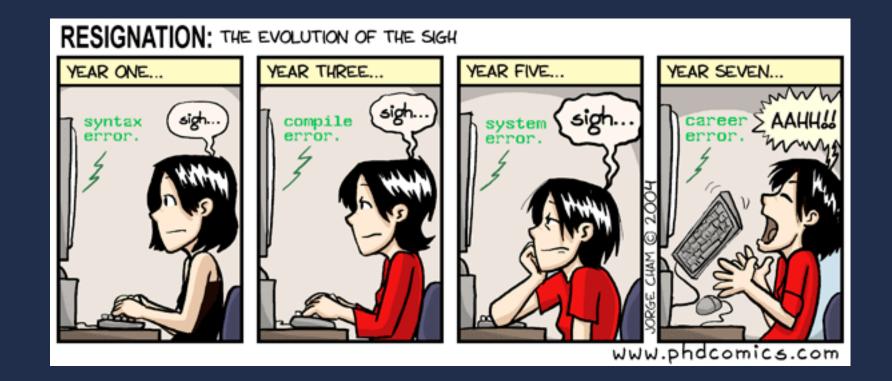
Thanks to J. Taylor Childers for the slides

www.anl.gov

Container Survey

Please vote based on your experience with:
•Virtual machines, hypervisors (VMware (1998), Virtualbox (2007))
•Docker (2013)
•Shifter (2015)
•Singularity (2016)

https://doodle.com/poll/2a723x2u9esbxyhh or https://tinyurl.com/thetasurvey2


Virtualization, Conteinerization

The aim is to run an app in an isolated environment

- Virtual machines provide full virtualization
 - Requires an image file
 - Guest OS run on the host OS on a virtual hardware layer
- Containerization is OS level virtualization
 - Requires an image or a recipe file
 - Each isolated user-space instance is called a container

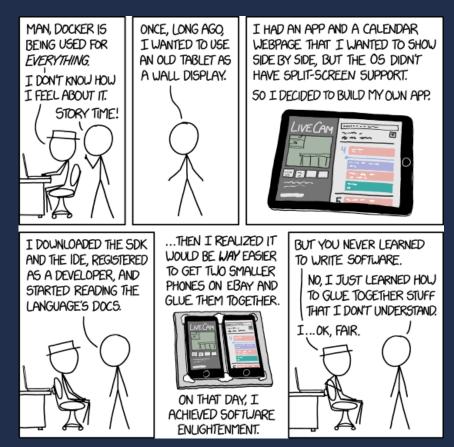
Do we need containers?

It can make your life easier.

http://phdcomics.com/comics/archive.php?comicid=531

Advantages

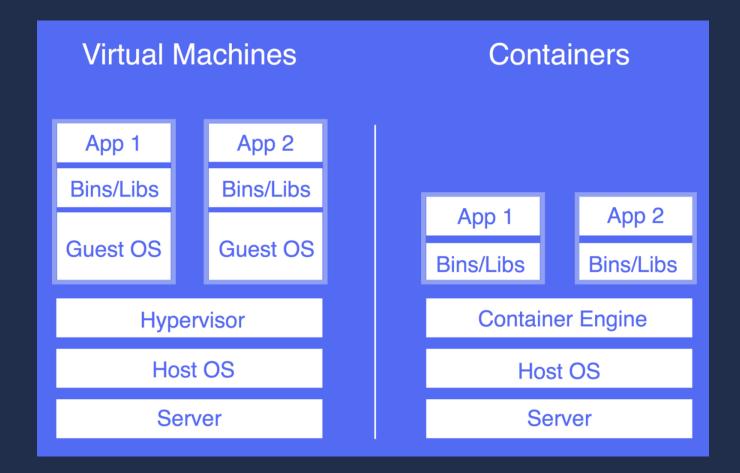
- Portability
 - You can use the same image on your laptop, local cluster or a *supercomputer*.
 - No need to ask system admins to install a library for you.
- Reproducibility
 - \$28 billion per year is spent on preclinical research that is not reproducible.
 - Include all data required to run your application in the image.
- Faster development and production
 - You can build the image anywhere, no need to compile on login node.
 - You can create an image based on existing images.



A Silver Bullet?

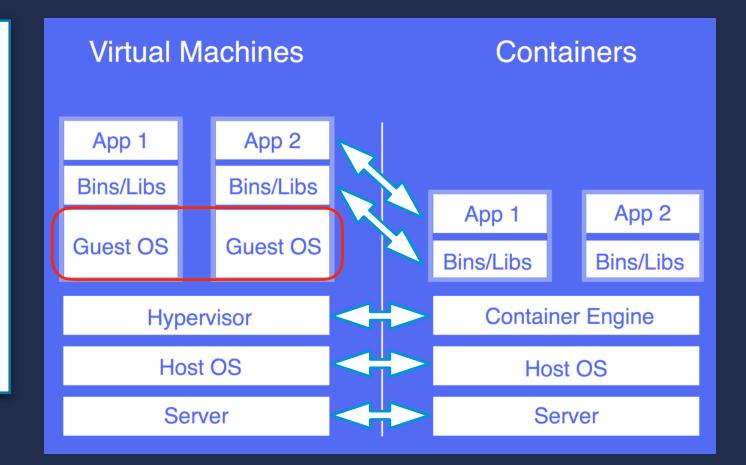
May not be the best solution.

https://xkcd.com/1988/


A Silver Bullet?

"The average time required to implement a moderate sized application is equivalent to half-life of the parallel computing platform", John Reynders, 1996.

Virtual Machines vs Containers


Virtual Machines vs Containers

Both Require:

- Host Operating System
- Hypervisor or Engine
- Image

Main Difference:

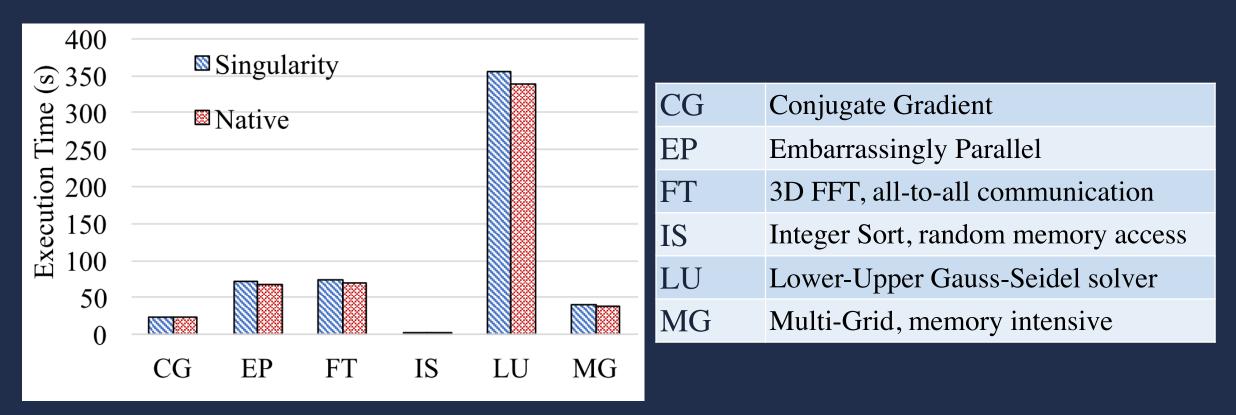
- VMs require entire internal operating system
- VMs virtualize system hardware

Container Solutions

- Linux Containers (LXC)
 - Uses kernel namespaces and cgroups for resource management.
- Docker
 - Extension of LXC, current enterprise solution for microservices.

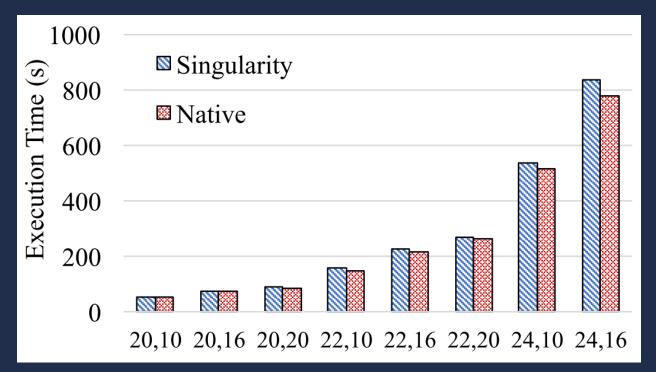
docker

- HPC containers:
 - Shifter (NERSC)
 - Charlie Cloud (LANL)
 - Singularity (LBNL, Sylabs Inc.)

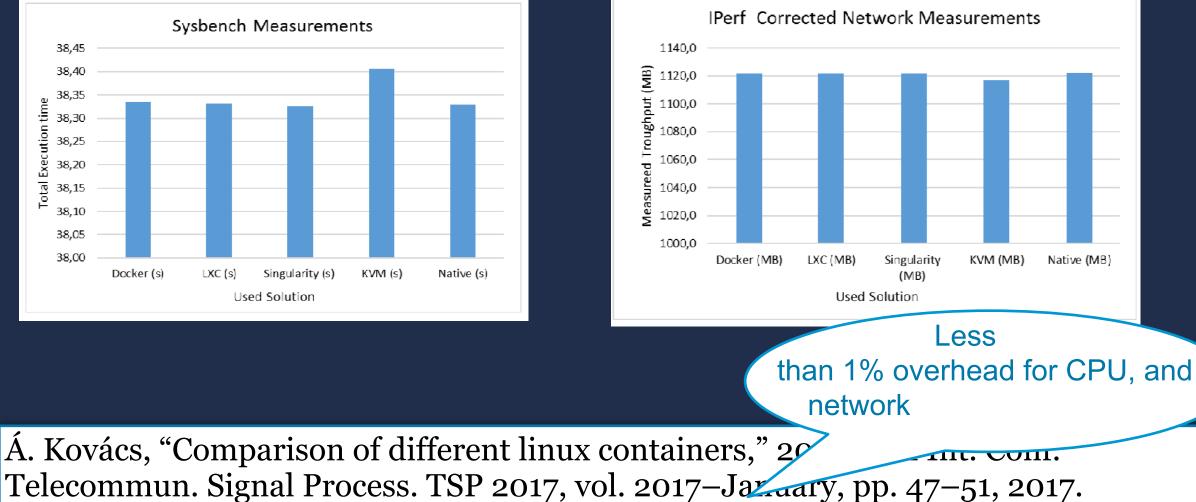


Container Comparison

	Singularity	Shifter	Charlie Cloud	Docker
Privilege model	SUID/UserNS	SUID	UserNS	Root Daemon
Supports current production Linux distros	Yes	Yes	No	No
Internal image build/bootstrap	Yes	No*	No*	No***
No privileged or trusted daemons	Yes	Yes	Yes	No
No additional network configurations	Yes	Yes	Yes	No
No additional hardware	Yes	Maybe	Yes	Maybe
Access to host filesystem	Yes	Yes	Yes	Yes**
Native support for GPU	Yes	No	No	No
Native support for InfiniBand	Yes	Yes	Yes	Yes
Native support for MPI	Yes	Yes	Yes	Yes
Works with all schedulers	Yes	No	Yes	No
Designed for general scientific use cases	Yes	Yes	No	No
Contained environment has correct perms	Yes	Yes	No	Yes
Containers are portable, unmodified by use	Yes	No	No	No
Trivial HPC install (one package, zero conf)	Yes	No	Yes	Yes
Admins can control and limit capabilities	Yes	Yes	No	No


G. M. Kurtzer, V. Sochat, and M. W. Bauer, "Singularity: Scientific containers for mobility of compute," PLoS One, vol. 12, no. 5, pp. 1–20, 2017.

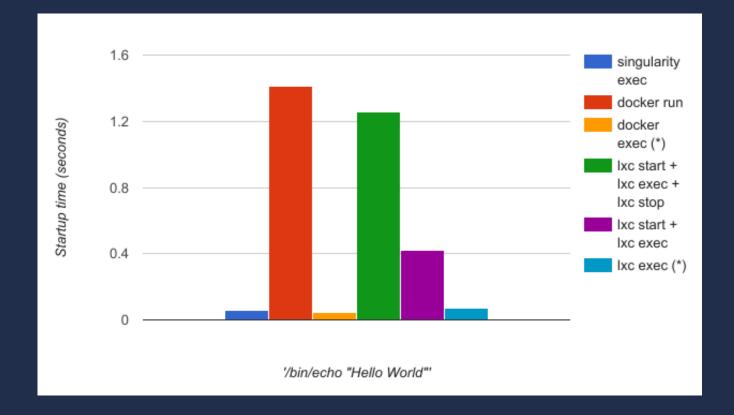
X. Lu and D. K. Panda, "Is Singularity-based Container Technology Ready for Running MPI Applications on HPC Clouds?," Proc. 10th Int. Conf. Util. Cloud Comput. (UCC '17), pp. 151–160, 2017.


Graph-data analytics workload Point-to-point communications 20,10 means 2²⁰ vertices and 2¹⁰ edges

2 KNL nodes, 128 processes

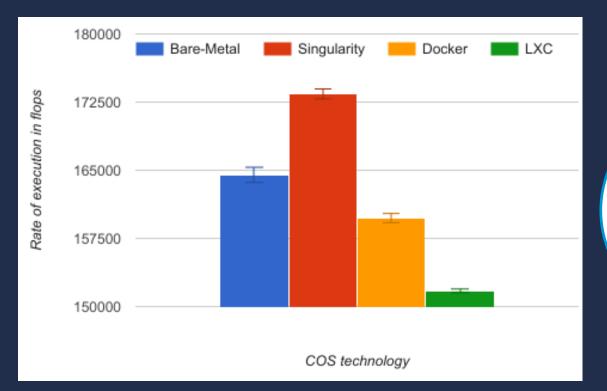
Less than 8% overhead for CPU, memory, network, and IO

X. Lu and D. K. Panda, "Is Singularity-based Contain rechnology Ready for Running MPI Applications on HPC Clouds?," Proc. 10th Int. Conf. Util. Cloud Comput. (UCC '17), pp. 151–160, 2017.



IPerf Corrected Network Measurements

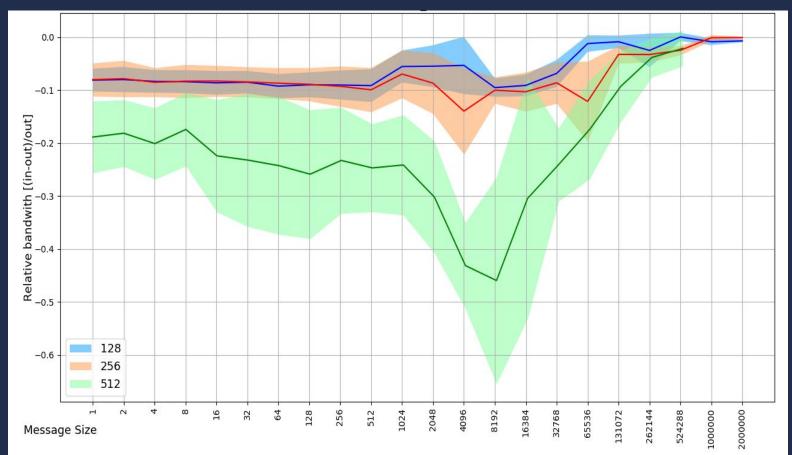
Argonne Leadership Computing Facility 14



Native (MB)

C. Arango, R. Dernat, and J. Sanabria, "Performance Evaluation of Container-based Virtualization for High Performance Computing Environments," 2017.

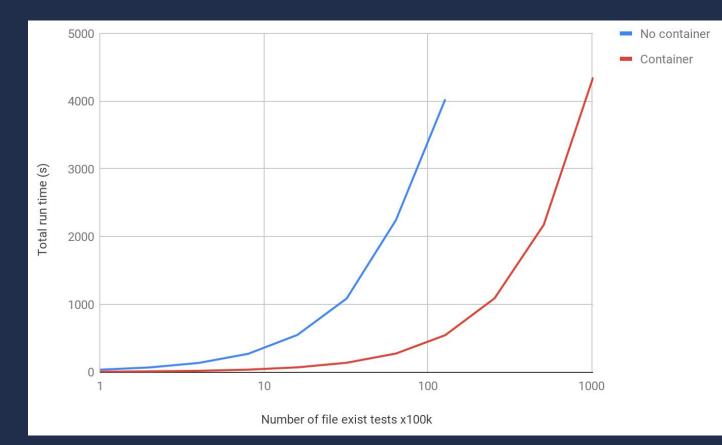
Argonne


Singularity was able to achieve a **better** performance than **native** with 5.42% because is not emulating a full hardware level virtualization (only the mount namespace) paradigm and as the image itself is only a single metadata lookup this can yield in very high performance benefits.

HPL benchmark, higher is better

C. Arango, R. Dernat, and J. Sanabria, "Performance Evaluation of Container-based Virtualization for High Performance Computing Environments," 2017.

Theta Benchmarks - Bandwidth



- OSU micro benchmark
- 1000 runs for each message size
- In container vs Out

Spencer Williams, J. Taylor Childers https://github.com/spencer-williams/sgww_argonne

Theta Benchmarks - File checks

• One script creates *n* files for *n* MPI ranks.

- Another one checks the files if they exist
- Singularity caches its files making it ~6x faster

Spencer Williams, J. Taylor Childers https://github.com/spencer-williams/sgww_argonne

How to start?

- Official Singularity documentation
 - <u>https://www.sylabs.io/docs/</u>
 - <u>singularity-container.slack.com</u>
- How to use Singularity on Theta
 - <u>https://www.alcf.anl.gov/user-guides/singularity</u>
- Similar tutorials from other HPC centers:
 - <u>http://www.sdsc.edu/support/user_guides/tutorials/singularity.html</u>
 - https://github.com/NIH-HPC/Singularity-Tutorial
 - <u>https://ulhpc-tutorials.readthedocs.io/en/latest/containers/singularity/</u>
- Github repo to check Singularity source and issues
 - <u>https://github.com/sylabs/singularity</u>
- Singularity registry
 - <u>https://www.singularity-hub.org/</u>
- Docker registry
 - https://hub.docker.com/

How to start?

- If you have sudo access to a laptop, or even a <u>Raspberry Pi</u>:
 - Optional: Install Docker
 - https://docs.docker.com/get-started/
 - Install Singularity (not packaged)
 - https://www.sylabs.io/guides/2.6/user-guide/installation.html
- Else if you have a GitHub account:
 - Login Singularity Hub with your GitHub account. You can create Singularity recipe files in a GitHub repo and they will be built automatically if you link this repo to shub.
- Else:
 - Search Singularity Hub (tip: jtchilders, keceli, theta)
 - You can pull/build images from Singularity or Docker hub on Theta.
 - Open a GitHub account.

Containers and Images

Docker manual: "Build an image and run it as one container

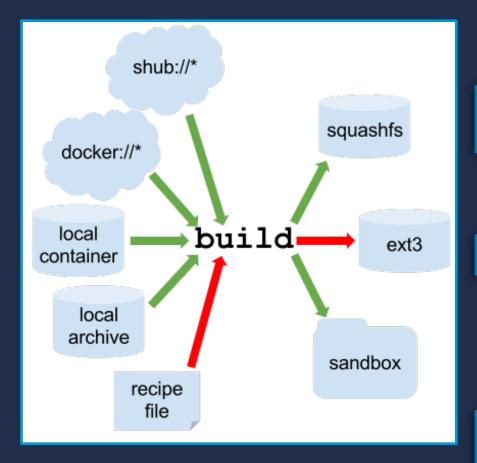
- An image is an executable package that includes everything needed to run an application--the code, a runtime, libraries, environment variables, and configuration files.
- A container is a runtime instance of an image--what the image becomes in memory when executed (that is, an image with state, or a user process), i.e. a container is launched by running an image, but you first build the image.

Singularity manual: "Build a Container"

• Uses image to refer to the *.img, *.simg files. Refers the build process as building container.

Using Singularity

\$> singularity
USAGE: singularity [global options...] <command> [command options...] ...
GLOBAL OPTIONS:
 -d|--debug Print debugging information
 -h|--help Display usage summary
 -s|--silent Only print errors
 -q|--quiet Suppress all normal output
 --version Show application version
 -v|--verbose Increase verbosity +1
 -x|--sh-debug Print shell wrapper debugging information


- Before you report an error, run Singularity with -d flag
- -h is useful to remember about the syntax for each command

• Useful commands:

build shell	Build a new Singularity container Run a Bourne shell within container
exec	Execute a command within container
run	Launch a runscript within container
apps	List available apps within a container
pull	Pull a Singularity/Docker container to \$PWD

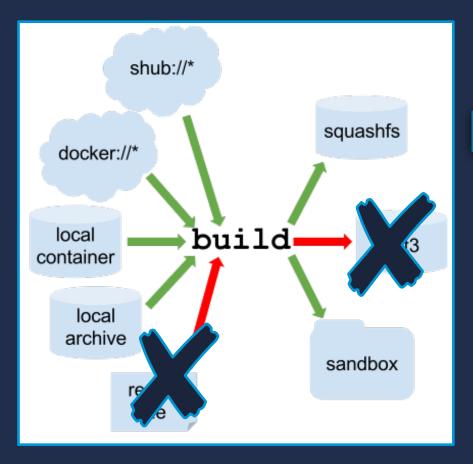
Building container images

Build based on an image on a hub: (Does not require sudo)

\$>singularity build <OPT> <u>shub://xxx/yy:z</u> \$>singularity build <OPT> docker://xxx/yy:z

Build based on a recipe file (Requires sudo)

\$>sudo singularity build <OPT> SingularityFile


By default created image is read only in squashfs format. Writable image can be created: (Requires sudo)

--sandbox: Writable container within a directory
--writable: Legacy writable image format (ext3)

https://www.sylabs.io/guides/2.6/user-guide/build_a_container.html

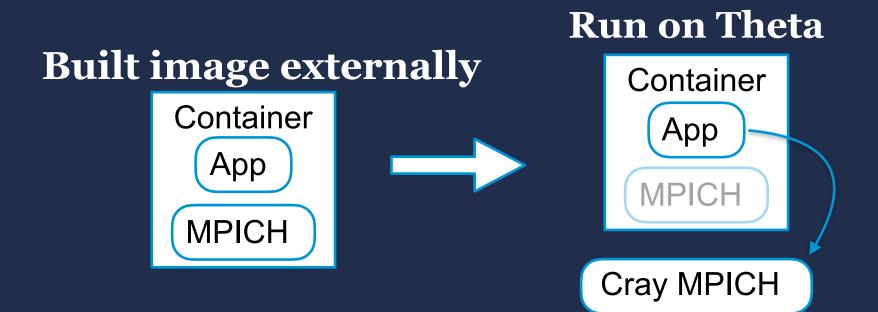
Singularity on Theta

If you are not going to run the container in parallel, you can use *any* images from Singularity or Docker hub.

\$> singularity build quip.simg <u>shub://libAtoms/QUIP</u>

You can run the image like any other application.

\$> singularity run quip.simg


You can bind a directory on Theta to your container with -b <host_path>:<container_path>:<opt> <opt> = ro for read-only, <opt> = rw for read/write

\$> singularity run -B ./mydata:/data:rw quip.simg

Singularity on Theta (MPI applications)

We need to use Cray MPI on Theta, so we cannot use any image. We can build our special image with a Singularity recipe file

Source of base image

Make working directory. Copy files from into image.

During the 'setup' phase, the image does not yet exist and is still on the host filesystem at the path SINGULARITY_ROOTFS This creates app directory at '/myapp' in the image

Copy files from into imag

26 Argonne Leadership Computing Facility

Bootstrap: docker

From: centos

%setup

echo \${SINGULARITY_ROOTFS}
mkdir \${SINGULARITY_ROOTFS}/myapp

cp pi.c \${SINGULARITY_R00TFS}/myapp/

%post

9

10

11 12

13

16

17

18

19

20 21

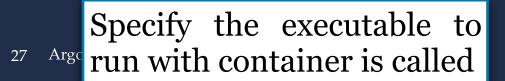
22

23

24 25

26

27


28

- yum update −y
- yum groupinstall –y "Development Tools"
- yum install –y gcc
- yum install –y gcc–c++
- 14 yum install –y wget
- 15 cd /myapp
 - # install MPICH
 - wget http://www.mpich.org/static/downloads/3.2.1/mpich-3.2.1.tar.gz
 - tar xf mpich-3.2.1.tar.gz
 - cd mpich-3.2.1
 - # disable the addition of the RPATH to compiled executables
 - # this allows us to override the MPI libraries to use those
 - # found via LD_LIBRARY_PATH
 - ./configure --prefix=\$PWD/install --disable-wrapper-rpath
 - make –j 4 install
 - # add to local environment to build pi.c
 - export PATH=\$PATH:\$PWD/install/bin
 - export LD_LIBRARY_PATH=\$LD_LIBRARY_PATH:\$PWD/install/lib cd ..
 - mpicc -o pi -fPIC pi.c
- 29 30
 - 1 %runscript
- 32 /myapp/pi

Source of base image

Make working directory. Copy files from into image.

Commands required for installing your application.

Bootstrap: docker
 From: centos

%setup

- echo \${SINGULARITY_ROOTFS}
- mkdir \${SINGULARITY_R00TFS}/myapp
- cp pi.c \${SINGULARITY_ROOTFS}/myapp/

%post

9

10

11

14 15

16 17

18

19

21

22

23

24 25

26

29

yum update -y yum groupinstall -y "Development Tools" yum install -y gcc yum install -y gcc-c++ yum install -y wget cd /myapp # install MPICH wget http://www.mpich.org/static/downloads/3.2.1/mpich-3.2.1.tar.gz tar xf mpich-3.2.1.tar.gz cd mpich-3.2.1 # disable the addition of the RPATH to compiled executables # this allows us to override the MPI libraries to use those # found via LD_LIBRARY_PATH ./configure --prefix=\$PWD/install --disable-wrapper-rpath make -j 4 install # add to local environment to build pi.c export PATH=\$PATH:\$PWD/install/bin export LD_LIBRARY_PATH=\$LD_LIBRARY_PATH:\$PWD/install/lib cd .. mpicc -o pi -fPIC pi.c

%runscript

/myapp/pi

Source of base image

Make working directory.

Copy files from into image.

%setup

- echo \${SINGULARITY_ROOTFS}
- mkdir \${SINGULARITY_ROOTFS}/myapp
- cp pi.c \${SINGULARITY_R00TFS}/myapp/

%post

9

10

15

16

17 18

19

20 21

22

23

24 25

26

27

28

yum update –y

Bootstrap: docker

From: centos

- yum groupinstall –y "Development Tools"
- yum install –y gcc
- yum install –y gcc–c++
- yum install –y wget
- cd /myapp
- # install MPICH

wget http://www.mpich.org/static/downloads/3.2.1/mpich-3.2.1.tar.gz

- tar xf mpich-3.2.1.tar.gz
- cd mpich-3.2.1
- # disable the addition of the RPATH to compiled executables
- # this allows us to override the MPI libraries to use those
- # found via LD_LIBRARY_PATH
- ./configure --prefix=\$PWD/install --disable-wrapper-rpath
- make –j 4 install
- # add to local environment to build pi.c
- export PATH=\$PATH:\$PWD/install/bin
- export LD_LIBRARY_PATH=\$LD_LIBRARY_PATH:\$PWD/install/lib cd ..

```
mpicc -o pi -fPIC pi.c
```

%runscript

/myapp/pi

Commands to install my image with the application.

Typically containers are built to run one executable.

singularity run myapp.img

²⁸ Argc Specify the executable to run with container is called

Using a mpich installed Image as the base

Commands to install PETSc

Note: This recipe builds on my laptop but gives an error on Singularity hub, since they do not allow configure script to run executables.

Bootstrap: shub From: keceli/mpi_benchmark:theta

%setup

echo \${SINGULARITY_ROOTFS}
cd \${SINGULARITY_ROOTFS}/container

%post

yum update –y

git clone -b maint https://bitbucket.org/petsc/petsc petsc
cd petsc

PATH=\$PATH:/mpich-3.2.1/install/bin/

LD_LIBRARY_PATH=\$LD_LIBRARY_PATH:/mpich-3.2.1/install/lib export PETSC_DIR=/petsc

export PETSC_ARCH=arch-container

./configure --with-shared-libraries=1 --with-debugging=1 -download-fblaslapack --with-cc=mpicc --with-cxx=mpicxx --withfc=mpif90

make -j 4 PETSC_DIR=/petsc PETSC_ARCH=arch-container all cd /petsc/src/ksp/ksp/examples/tutorials make ex5

%environment

export PETSC_DIR=/petsc
export PETSC_ARCH=arch-container

%runscript

/petsc/src/ksp/ksp/examples/tutorials/ex5

Globus for Data Transfer

- Web Interface to transfer files between Globus Endpoints (NERSC, ALCF, OLCF, BNL, etc.)
- Login using ANL Credentials or other institutes
- Must authenticate with the myproxy server of source and destination.

🞐 globus	Manage Data Publish Groups - Support - Account
	Transfer Files Activity Endpoints Bookmarks Console
Transfer Files	Get Globus Connect Personal Turn your computer into an endpoint.
Endpoint Start here Path Go	Endpoint &
Start by selecting an endpoint.	Start by selecting an endpoint.
Label This Transfer This will be displayed in your transfer activity.	
Transfer Settings sync - only transfer new or changed files delete files on destination that do not exi preserve source file modification times verify file integrity after transfer encrypt transfer	xist on source 🕜

https://www.globus.org/app/transfer

Globus for Data Transfer

globus https://docs.globus.org/api/transfer/

• There is also a Python/Java API for doing this

https://github.com/globusonline/transfer-api-client-python

• Example Python implementation

<pre>from globusonline.transfer import api_client</pre>
<pre>api = api_client.TransferAPIClient(username="myusername",</pre>
<pre>cert_file="/path/to/client/credential",</pre>
<pre>key_file="/path/to/client/credential")</pre>
<pre>status_code, status_message, data = api.task_list()</pre>

• Provides effective transfer rates at the scale of 300MB/s between large facilities

Create new Github Repository

- https://github.com/jtchilders/singularity_mpi_test_recipe
- Need to add recipe file inside with filename 'Singularity'
- Add file pi.c from previous link

This repository Search	Pull re	quests Issues Mar	ketplace Explore		<u>↓</u> + • 🔃 •
📮 jtchilders / singularity_	_mpi_test_recipe		O Unw	atch ▼ 1 ★ Star 0	% Fork 0
<> Code (1) Issues (0)	1 Pull requests 0	ojects 0 🗉 Wiki	III Insights 🔅 Se	ettings	
My first Singularity Recipe for Add topics	or MPI				Edit
7 commits	ဖို 1 branch	\bigtriangledown 0 releases	🄽 1 contri	butor 🔬 G	GPL-3.0
Branch: master - New pull re	equest		Create new file Up	oad files Find file Clor	ne or download 🔻
Branch: master - New pull re	·		Create new file Up	oad files Find file Clor Latest commit 153800	
	·	it	Create new file Up		
jtchilders remove build script	t		Create new file Up		ca 8 minutes ago
jtchilders remove build script	t Initial comm	d script	Create new file Up		ca 8 minutes ago 2 hours ago

- Goto: <u>https://www.singularity-hub.org/login/</u>
- Authenticate using your Github account
- You can then add github repositories to your container collection.
- Click the big red button

My Container Collections

ADD A COLLECTION

One collection is created for each connected Github repository. In that collection, several containers master branch of the Github repository. Read more about recipe file naming or build options.

- Goto: <u>https://www.singularity-hub.org/login/</u>
- Authenticate using your Github account
- You can then add github repositories to your container collection.
- Click the big red button
- Select your new repository and click the big red button

New Container Build							
	dougbenjamin/pilot2						
	jtchilders/atlasworf						
	jtchilders/atlas_egammatrig						
	jtchilders/atlas_l1calo						
	jtchilders/atlas_ml_data_scripts						
	jtchilders/atlas_ml_event_classifier						
	jtchilders/atlas_status_android_app						
	jtchilders/atlas_ttbar_unfolding						
	jtchilders/conda_install_scripts						
	jtchilders/hepsim_ml_analysis						
	jtchilders/hepsim_nersc_production						
	jtchilders/hep_generator_tools						
	jtchilders/panda-harvester						
	jtchilders/pilot						
	jtchilders/pilot2						
	jtchilders/python-yampl						
	itokildoro (nuthon toolo						

- Go to: <u>https://www.singularity-hub.org/login/</u>
- Authenticate using your Github account
- You can then add github repositories to your container collection.
- Click the big red button
- Select your new repository and click the big red button
- Now you have your recipe listed and Singularity Hub will begin recursively searching the repo for any files named 'Singularity' and building those recipes
- Our example only has 1 recipe
- Click on the recipe

	0
1.00	

My Container Collections

One collection is created for each connected Github repository. In that collection, several containers will automatically be built: one for each uniquely named recipe file found in the master branch of the Github repository. Read more about recipe file naming or build options.

[Enter Keywords Here						
	Name	Builds	Description	Stars 📩	Downloads	Last Modified	
	jtchilders/singularity_mpi_test_recipe	1	My first Singularity Recipe for MPI	0	5	2018-05-15	0

- Goto: <u>https://www.singularity-hub.org/login/</u>
- Authenticate using your Github account
- You can then add github repositories to your container collection.
- Click the big red button
- Select your new repository and click the big red button
- Now you have your recipe listed and Singularity Hub will begin recursively searching the repo for any files named 'Singularity' and building those recipes
- Our example only has 1 recipe
- Click on the recipe to see it's build status
- Error messages during build can be seen by clicking the big red button
- Otherwise it will list the container as COMPLETE

jtchilders/singula	☆ ೧					
My first Singularity Recipe for MPI						
SUPPLEMENTARY - SETTINGS USAGE						
Builds COMMIT						
	uri 🗸	Recipe	Status	Tag (Branch)	Date	
₩ =	jtchilders/singularity_mpi_te	Singularity 🔱	ERROR	latest (master)	May 15, 2018, 12:52 p.m. co	
			COMPLETE	Rows per page:	50 ♦ 1 -1 of 1	

Running Singularity on Theta

\$> singularity build test.img shub://keceli/mpi_benchmark:theta
\$> qsub submit.sh

#!/bin/bash
#COBALT -t 30
#COBALT -q training
#COBALT -n 2
#COBALT -A SDL_Workshop

module swap PrgEnv-intel PrgEnv-gnu
Use Cray's Application Binary Independent MPI build
module swap cray-mpich cray-mpich-abi

export LD_LIBRARY_PATH=\$CRAY_LD_LIBRARY_PATH:\$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=/opt/cray/wlm_detect/1.2.1-6.0.4.0_22.1__gd26a3dc.ari/lib64/:\$LD_LIBRARY_PATH
export SINGULARITYENV_LD_LIBRARY_PATH=\$LD_LIBRARY_PATH

echo \$SINGULARITYENV_LD_LIBRARY_PATH

aprun -n 8 -N 4 singularity run -B /opt/cray:/opt/cray:ro -B /var/opt:/var/opt:ro test.img

Summary

• Containers can be helpful for

- Portability
 - HPC environment requires special care.
- Reproducibility
- Faster development cycles
- Minimal overhead
 - There might be additional performance penalties due to dynamic linking, fat images, moderate optimization
- Very useful for complicated software stacks with legacy dependencies.
- With more HPC interest in containers, technology will evolve faster.

Resources

- Official Singularity documentation
 - <u>https://www.sylabs.io/docs/</u>
 - <u>singularity-container.slack.com</u>
- How to use Singularity on Theta
 - <u>https://www.alcf.anl.gov/user-guides/singularity</u>
- Similar tutorials from other HPC centers:
 - <u>http://www.sdsc.edu/support/user_guides/tutorials/singularity.html</u>
 - https://github.com/NIH-HPC/Singularity-Tutorial
 - <u>https://ulhpc-tutorials.readthedocs.io/en/latest/containers/singularity/</u>
- Github repo to check Singularity source and issues
 - <u>https://github.com/sylabs/singularity</u>
- Singularity registry
 - <u>https://www.singularity-hub.org/</u>
- Docker registry
 - https://hub.docker.com/

References

[1] G. M. Kurtzer, V. Sochat, and M. W. Bauer, "Singularity: Scientific containers for mobility of compute," PLoS One, vol. 12, no. 5, pp. 1–20, 2017 [2] R. Priedhorsky and T. Randles, "Charliecloud," Proc. Int. Conf. High Perform. Comput. Networking, Storage Anal. - SC '17, pp. 1–10, 2017. [3] Á. Kovács, "Comparison of different linux containers," 2017 40th Int. Conf. Telecommun. Signal Process. TSP 2017, vol. 2017–Janua, pp. 47–51, 2017. [4] A. J. Younge, K. Pedretti, R. E. Grant, and R. Brightwell, "A Tale of Two Systems: Using Containers to Deploy HPC Applications on Supercomputers and Clouds," Proc. Int. Conf. Cloud Comput. Technol. Sci. CloudCom, vol. 2017–Decem, pp. 74–81, 2017. [5] C. Arango, R. Dernat, and J. Sanabria, "Performance Evaluation of Container-based Virtualization for High Performance Computing Environments," 2017. [6] X. Lu and D. K. Panda, "Is Singularity-based Container Technology Ready for Running MPI Applications on HPC Clouds?," Proc. 10th Int. Conf. Util. Cloud Comput. (UCC '17), pp. 151–160, 2017.

Container Survey

Please vote based on your experience with:
•Virtual machines, hypervisors (VMware (1998), Virtualbox (2007))
•Docker (2013)
•Shifter (2015)
•Singularity (2016)

https://doodle.com/poll/2a723x2u9esbxyhh or https://tinyurl.com/thetasurvey2

Any Questions?

References

- "<u>A Tale of Two Systems: Using Containers to Deploy HPC Applications on</u> <u>Supercomputers and Clouds</u>"
- "<u>Charliecloud: unprivileged containers for user-defined software stacks in HPC</u>"
- "Singularity: Scientific containers for mobility of compute"
- "Contain This, Unleashing Docker for HPC"
- "<u>Performance Evaluation of Container-Based Virtualization for High Performance</u> <u>Computing Environments</u>" (There is a <u>2013 paper on IEEE with the same title</u>)
- "Comparison of Different Linux Containers"

