Boosting Power Efficiency of HPC Applications with GEOPM

Jonathan Eastep [jonathan.m.eastep@intel.com] Principal Engineer and PhD 29 August 2018

Outline

- Challenges and Approach to Solving Them
- GEOPM Architecture, Use-Cases, and Deployments
- GEOPM Experimental Evaluation
- GEOPM Work in Progress and Future Work
- Takeaways and Call to Action

Challenges Motivating Power R&D

- Original motivator for GEOPM was improving power efficiency for Exascale systems, but scope has grown to include current systems
- Exascale: US DOE set a target of 1 ExaFLOPs within ~45 MW by 2021
- With only traditional scaling techniques, facing 2-3x efficiency gap
 - Manufacturing process technology advances
 - Integration of HW components
 - Architectural advances
- We anticipate that no single silver bullet solution can close this gap

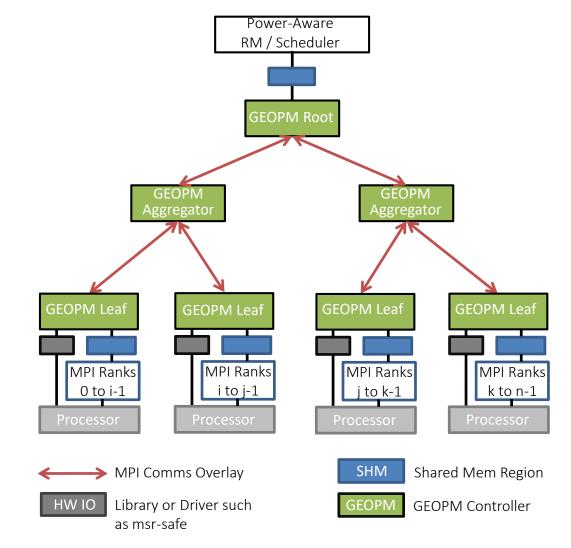
Implications of Power/Energy Challenges

- Advances needed in multiple dimensions: architecture, power delivery, software, and power management
- Focus of this work: rethinking technologies for power management
 - Historically, power management was largely the responsibility of the HW/FW
 - Historical techniques waste significant power for a given level of performance
 - Node-local and lacking in application awareness (oblivious to impact of performance variation across nodes on overall performance in BSP applications, oblivious to phases)
 - Move toward a solution including <u>SW layers of power management</u>
 - SW provides global application-awareness and leverages existent (or enhanced) HW controls to guide HW to better decisions

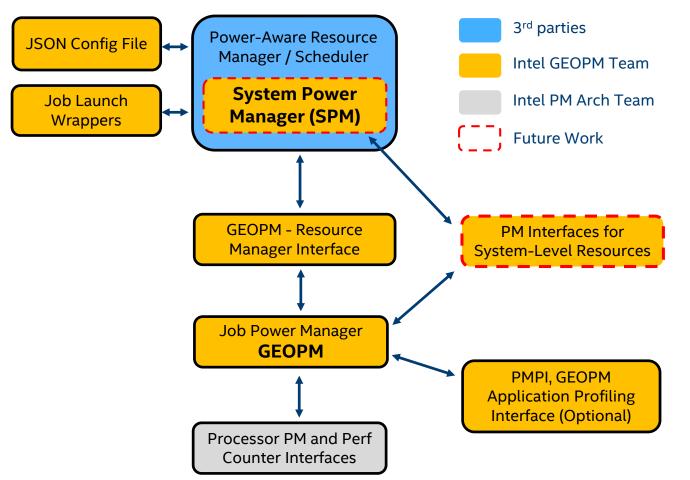
GEOPM Solution

- GEOPM = Global Extensible Open Power Manager
 - New software runtime for power management and optimization of HPC jobs
 - Adds scalable, <u>application-aware</u> layer to system power management
 - Community collaborative open source project, started and supported by Intel
 - Project page: <u>https://geopm.github.io/</u>
- Analyzes the application for patterns then coordinates optimizations to HW or SW control knob settings across compute nodes in a job to exploit those patterns
 - Feedback-guided optimization leveraging lightweight profiling of the application
 - Example knobs: node power budgets, processor core frequencies
 - Example patterns: load imbalance across nodes, distinct computational phases within a node
- Promises to increase performance or efficiency by 5-30% on current systems
 - Mileage varies depending on workload and what controls/monitors are available in the HW
 - See ISC'17 paper by Eastep et al. for experimental data (see later slides for summary)

GEOPM: An Open Platform for Research


- Another goal is providing a highly extensible, open platform suitable for community research on SW power/energy optimization
 - Goal: accelerate innovation by aligning community on common SW framework for this type of research
 - Truly open: non-sticky BSD license and simple porting via plugin architecture
 - Extend GEOPM to explore new optimization strategies via 'Agent' plugins
 - Extend GEOPM to target new control knobs or HW platforms via 'IOGroup' plugins

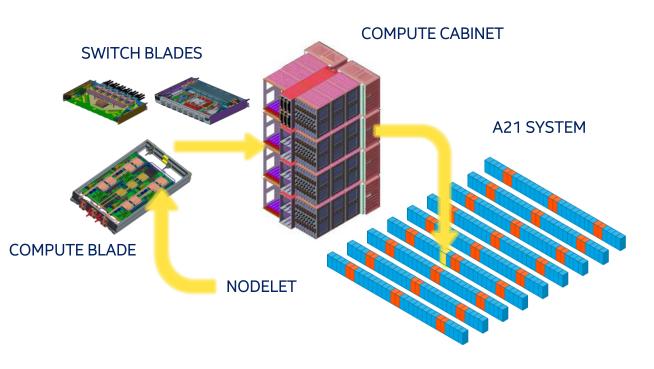
Outline


- Challenges and Approach to Solving Them
- GEOPM Architecture, Use-Cases, and Deployments
- GEOPM Experimental Evaluation
- GEOPM Work in Progress and Future Work
- Takeaways and Call to Action

GEOPM: Hierarchical Design & Comms

- GEOPM = job-level runtime that coordinates tuning across all compute nodes in job
- Scalability achieved via tree-hierarchical design and decomposition
 - Tree hierarchy of controllers
 - Each controller coordinates with parent and children via recursive control and feedback
 - Controller code is extensible via 'Agent' plugins
- Implementation info
 - Access to HW controls achieved via drivers/libs
 - Application profile data collected via PMPI and optional programmer API over shared memory
 - Controllers run in job compute nodes; preferred mode runs them in a core reserved for the OS
 - Controller tree comms currently use in-band MPI (this is easy to modify if desired)

GEOPM Interfaces and HPC Stack Integration


- Long-term: GEOPM sits underneath SPM layer of power-aware resource manager
 - SPM and GEOPM work together for full-system mgmt, talk via RM interface or JSON config file
 - Based on site policy, SPM decides power budgets (or other constraints) for all jobs
 - Based on site policy, SPM decides what 'Agent' optimization plugin GEOPM will use for a given job (e.g. maximize performance or energy efficiency)
 - One instance of GEOPM runs with each job and enforces the power budget (or other constraints) while carrying out the SPM-desired optimization
 - Exploring models where GEOPM runs w/ all jobs
- Near-term, GEOPM is standalone and opt-in
 - Power-aware RMs are still under development
 - Job-level management only: SPM not present to coordinate GEOPM configurations across jobs
 - User requests GEOPM and selects 'Agent' plugin when queuing jobs. We provide wrappers around popular job queue tools (e.g. aprun and srun) which intercept the GEOPM-specific options
 - User configures GEOPM 'Agent' w/ JSON config file

GEOPM: Highlighting Simpler Use-Cases

Agent	Use-Case	How To		
General Users	Optimize workload energy or performance	Use GEOPM's built-in optimization capabilities		
Developers	Tune up application or library code	Use GEOPM's reporting capabilities to characterize runtime and energy of your app or its phases		
Admins, Researchers	Monitor job or system statistics or trace GEOPM's settings of HW control knobs	Use GEOPM's reporting and tracing capabilities		
Researchers, Vendors, Integrators	Tailor optimization strategies to a specific HPC Center or applications	Extend GEOPM optimization strategies by adding 'Agent' plugins		
Researchers, Vendors, Integrators	Port GEOPM to support new vendor HW platforms or new HW controls + monitors	Port GEOPM by adding 'IOGroup' plugins		
Vendors, Integrators	Codesign HW, SW, and FW	Codesign GEOPM plugins + HW/FW features through open or internal efforts. GEOPM is a codesign vehicle		
HPC Center Leadership	Prepare for future where power will be constrained	Provide GEOPM to scientists as a platform to research power/energy optimization strategies		
HPC Center Leadership	er Leadership Optimize system energy efficiency or throughput under power caps Leverage GEOPM + Resource Manager / Scheduler integration for level optimization [coming soon]			
Everyone	Help shape the GEOPM v1.0 product	Follow GEOPM documentation to install; participate in Beta testing and provide feedback		
Intel Corporation				

EOPM Tech Adopted in A21 for Exascale

- GEOPM is a pillar of Intel's solution for reaching Exascale targets
- Intel working on a contract with Argonne to build first US Exascale system called 'A21'
- A21 system will achieve >1 Peak ExaFLOPs in 2021
- GEOPM is expected to be enhanced and deployed on A21

GEOPM Benefits Current Systems Too

- While funded to address Exascale challenges, GEOPM is being deployed on current systems too and will benefit them too
- Expected to be in production on **Theta** system at Argonne this year
 - Knights Landing system
 - Provides vehicle for production / at-scale testing of GEOPM software
 - Enables users to perform research leveraging GEOPM
- Expected to be in production on SuperMUC-NG system at LRZ, early '19
 - Aiming for a Top 10 ranking when the system comes online this year
 - Sky Lake based system
 - Strong emphasis on energy efficiency due to European electricity pricing

GEOPM Coming to More Systems via OpenHPC

Accepted into OpenHPC, expected to intercept SC'18 OpenHPC release Impact: adds an advanced power management runtime to OpenHPC and further expands the GEOPM community

Outline

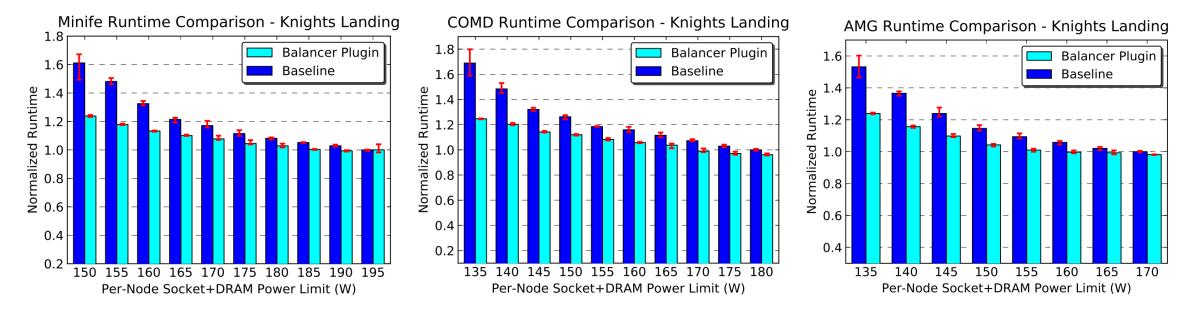
- Challenges and Approach to Solving Them
- GEOPM Architecture, Use-Cases, and Deployments
- GEOPM Experimental Evaluation
- GEOPM Work in Progress and Future Work
- Takeaways and Call to Action

Intro to GEOPM Power Balancer Plug-In

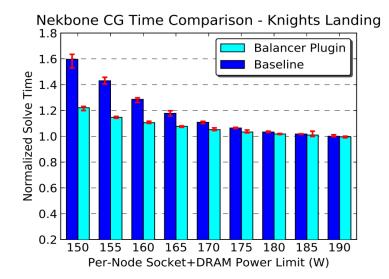
- Power Balancer is a built-in optimization plugin provided with GEOPM SW package
 - Demonstrates the benefits of application-aware optimization techniques
- What it does:
 - Speeds up iterative bulk-synchronous MPI jobs in power-capped systems
 - Identifies critical path nodes which determine time-to-solution
 - Reallocates more power to critical path nodes to accelerate them
 - Improves time-to-solution by proactively avoiding wait time at the synchronization point
- Feedback and control mechanisms:
 - Programmer annotates application's outer loop containing a global synchronization operation via a lightweight profiling API we provide with GEOPM (i.e. 'epoch' hints)
 - Power balancer plugin measures loop time on each node and compares times across nodes to identify critical path nodes and how much performance/power correction is needed
 - Power balancer reconfigures each node's HW RAPL limits to set a new power allocation

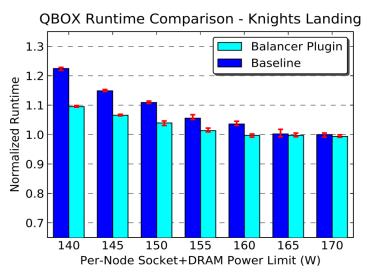
Background: Manufacturing Variation

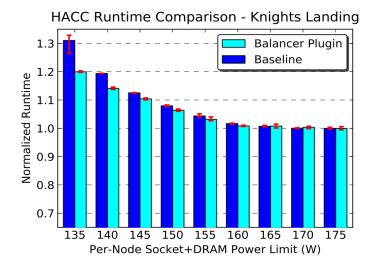
- In iterative bulk-synchronous programs, nodes must reach global synch point before next iteration can begin
- If some nodes arrive late, other nodes must wait: power is wasted and potential performance is lost
- Even though workloads may be work-balanced, some nodes can fall behind due to performance differences across nodes
- Where do these performance differences come from?
 - Manufacturing variation. Power capping exposes different frequencies on different processors at a given power cap
 - This is true even if processors are taken from same product SKU

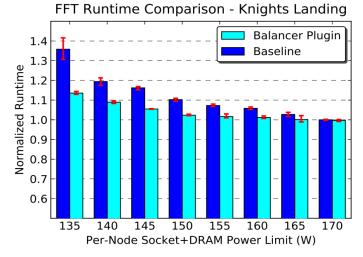

Experimental Setup

- Evaluations of power balancing plug-in performed on a Knights Landing cluster
- Included 5 key CORAL procurement benchmarks plus ExMatEx CoMD and NAS FT


Knights Landing Xeon Phi Cluster				
Hardware	Software			
12x KNL-F nodes B0 Beta (all same SKU)	CentOS 7, 'performance' frequency governor			
64 cores per node, 4-way hyperthreaded	Intel toolchain for C/C++/Fortran, MVAPICH2 MPI			
16GB MCDRAM, 256GB DRAM per node	Workloads instrumented with GEOPM profiling APIs			
Integrated OmniPath HFI, OmniPath Fabric	Workloads run on optimal core and hyperthread count			
Turbo enabled, 1.3GHz sticker frequency	Found that workloads run best if kept off of Linux CPU0			
230W TDP processors	GEOPM and app affinitized to non-overlapping core			
	5 runs averaged per data point, error bars included			


Results with a KNL Xeon Phi System


- Comparing time-to-solution when capping job power with GEOPM power balancer plug-in vs. static uniform power division (baseline), sweeping over job power caps
- Focusing on job power caps in the region of interest: low-end of caps avoids inefficient clock throttling and high-end is the unconstrained power consumption of the workload
- Main result: up to 30% improvement in time-to-solution at low caps (miniFE, CoMD, AMG), with up to 9-23% for the rest. Improvement generally increases as power is more constrained



Results with a KNL Xeon Phi System (2)

Intro to GEOPM Energy Efficient Plugin

- We provide another built-in plugin w/ GEOPM that optimizes energy efficiency
- Collaborating with LRZ, Cineca, UniBo to develop this plugin
- Optimize processor core frequency to save energy with minimal TtS impact
 - i.e. reduce frequency for apps or phases that are memory-limited or MPI-communication-limited

Energy-to-Solution and Time-to-Solution Comparison on Quartz BDX System at LLNL					
	Offline Automatic Application Best-Fit		Offline Automatic Per-Phase Best-Fit		
Workload	EtS Decrease vs Sticker	TtS Increase vs Sticker	EtS Decrease vs Sticker	TtS Increase vs Sticker	
NAS FT	9.5%	6.8%	15.8%	4.8%	
CORAL miniFE	8.5%	5.8%	Collecting data soon	Collecting data soon	
CORAL Nekbone	7.9%	2.4%	Collecting data soon	Collecting data soon	
LRZ Gadget	17.2%	7.1%	Collecting data soon	Collecting data soon	

Outline

- Challenges and Approach to Solving Them
- GEOPM Architecture, Use-Cases, and Deployments
- GEOPM Experimental Evaluation
- GEOPM Work in Progress and Future Work
- Takeaways and Call to Action

Work in Progress and Future Work

- Prepping for general availability of GEOPM on lota/Theta
 - Scheduling GEOPM tutorial for ALCF, timing TBD
- Prepping for inclusion of GEOPM in SC'18 OpenHPC release
- Prepping for v1.0 release of GEOPM for end of 2018
- Researching and developing GEOPM extensions with collaborators
 - Phase-adaptive optimization of processor core frequency for energy efficiency
 - Port supporting systems based on OpenPOWER + NVLink microarchitecture
 - Extensions for tuning parameters in SW (e.g. thread concurrency + MPI/OpenMP runtime params)
- Integrating GEOPM with other components of the HPC power stack:
 - Scalable global (job-level) monitoring
 - System-level power capping frameworks
 - Power-aware scheduling frameworks
 - System power forecasting frameworks

Longer-Term Vision: HW/FW Codesign

- GEOPM project is not just a software project. It also drives codesign of the features in Intel hardware for power-performance monitoring and control
- Goals are to significantly advance the state-of-the-art in HPC power management technology and to ensure GEOPM runs best on Intel
- Research areas:
 - Processor: improvements to granularity, reaction time, and interfaces for existing features
 - Processor: hooks for GEOPM to guide allocation of Turbo headroom among cores
 - Memory: hooks for GEOPM to hint to mem controller when it's best to enter low-power states
 - Memory: hooks for GEOPM to hint to prefetchers how aggressively they should prefetch

Outline

- Challenges and Approach to Solving Them
- GEOPM Architecture, Use-Cases, and Deployments
- GEOPM Experimental Evaluation
- GEOPM Work in Progress and Future Work
- Takeaways and Call to Action

EOPM: Take-Aways and Call-to-Action

- Substantial performance and energy benefits can be obtained with application-aware power management algorithms
- You can explore your own algorithms via new GEOPM plugins
- You can port GEOPM to your preferred architecture via plugins
- GEOPM coming soon to lota/Theta and other production systems
- Try GEOPM. Need feedback to polish code for v1.0 release EO'18
- Call to Action: join the growing GEOPM user or developer community!

Contact and Further Information

- Points of contact
 - Jonathan Eastep jonathan.m.eastep@intel.com
 - Slack message board <u>here</u>
- Tutorial on GEOPM
 - Coming soon to ALCF community. Now scheduling it
 - GEOPM will be made available to ALCF community on lota/Theta at this time
- ISC'17 paper introducing GEOPM
 - Paper <u>here</u> by Eastep et al.
- GEOPM project page and info
 - http://geopm.github.io
 - More tutorials for offline instruction on GEOPM
 - Source code and user/developer documentation
 - Contribution instructions and github collaboration tools

Team Acknowledgements

Principal Investigator:

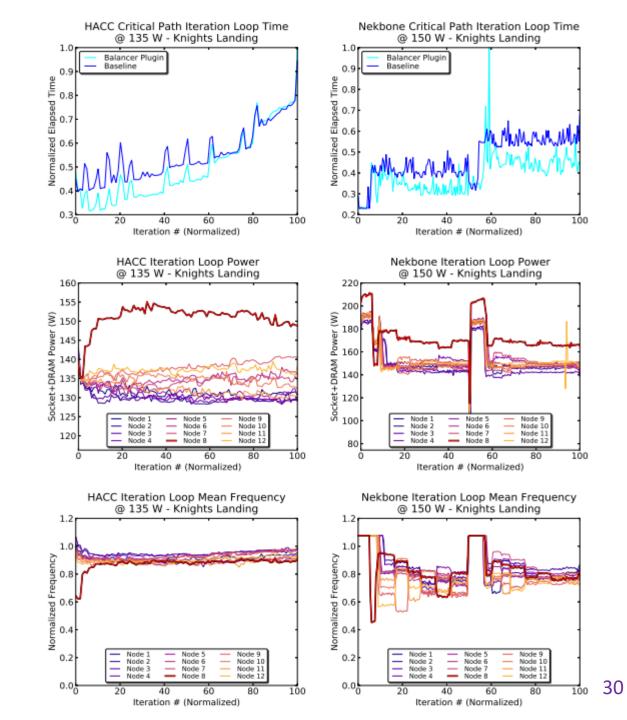
• Jonathan Eastep, Principal Engineer and PhD

Team (in alphabetical order):

- Asma Al-Rawi
- Brandon Baker
- Brad Geltz
- Sid Jana
- Lowren Lawson
- Matthias Maiterth (PhD Intern)
- Revathy Rajasree

- Fede Ardanaz (HW/FW Lead)
- Chris Cantalupo (SW Dev Lead)
- Diana Guttman
- Fuat Keceli
- Kelly Livingston
- Ali Mohammad

Questions?



GEOPM Speedup Analysis

(using included GEOPM Trace and Python Visualization Tools)

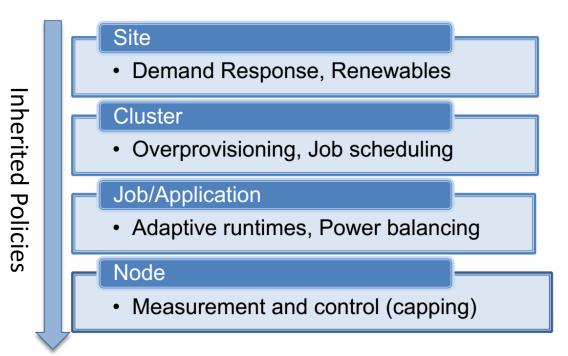
Take-away points:

- Results demonstrate robustness of power balancing algorithm against time-varying amounts of work in the outer loop and sharp shifts in computational-intensity (top graphs)
- Node 8, with lowest power efficiency in our KNL cluster, is allocated more power (middle graphs)
- Power balancing algorithm improves critical path loop time by finding the power allocation that roughly equalizes the frequencies of all nodes (bottom graphs)

GEOPM Beta Community Partners

	Institution	Principal Investigator	Project Name	Project Scope	Contribution Type	Time Span	Quality Level	Funded?
	Argonne	Ti Leggett Paul Rich Kalyan Kumaran	CORAL -> A21	 GEOPM 1.0 product development GEOPM >1.0 feature development GEOPM enablement for system power capping + EAS in Cobalt 	Sponsor	Q2'15 – Q4'21	Product	Yes
*	IBM STFC LLNL	Vadim Elisseev Tapasya Patki Aniruddha Marathe		 GEOPM port to Power8 + NVLink Integrate GEOPM with energy aware scheduler research 	Contributor	Q4'16 – TBD	Near- Product	Yes
*	LLNL Argonne U. Arizona U. of Tokyo	Tapasya Patki Aniruddha Marathe Pete Beckman Dave Lowenthal	ECP PS ECP Argo- GRM	 Exascale power stack leveraging GEOPM Integrate GEOPM + Caliper framework Integrate GEOPM w/ SLURM power capping and power-aware scheduling extensions Port of GEOPM to non-x86 architectures 	Contributor	Q1'17 – Q4'19 SLURM PoC in '18	Near- Product	Yes
	LRZ	Herbert Huber Et al.	Super MUC- NG	 Enhance GEOPM monitoring features Energy optimization plugin for GEOPM 1.0 	Contributor	Q3'17 – Q4'20	Product	Yes
	Sandia	James Laros Ryan Grant	Power API	 GEOPM and Power API xface compatibility Power API community WG kickoff at Intel 	User	Q4'14 - TBD	Industry Standard	Yes
*	UniBo CINECA	Andrea Bartolini Carlo Cavazzoni		 Enhance GEOPM monitoring features Energy optimization plugin for GEOPM Integrate GEOPM + EXAMON Integrate GEOPM w/ SLURM extensions 	Contributor	Q2'18 – Q4'19	Near- Product	Yes

* = collaborator shared their GEOPM usages and experiences at ISC'18: in the GEOPM Tutorial 31


GEOPM Profiling Interface

Function	Description
geopm_prof_epoch()	Synchronization loop iteration beacon
geopm_prof_region()	Get region ID from name
geopm_prof_enter()	Mark region entry
geopm_prof_exit()	Mark region exit
geopm_prof_progress()	Report region progress

- Functions enable programmer to mark up application with hints for GEOPM
 - Epoch: hint about a global synchronization loop where all MPI ranks will wait if 1 rank falls behind
 - Region: hint about computational phases between synch events for phase-adaptive energy mgmt
 - Progress: give application-level performance signal that can be used for intra-phase energy mgmt
- Interface is simple to use and has a low-overhead implementation
 - Nonetheless, research is under way to automatically extract this info with no programmer effort

PowerStack Solution

- New production SW power mgmt stack to address Exascale challenges
- Design goals: holistic (site-wide), dynamic, flexible, application-aware

- Collaboration: my team, Argonne, LLNL, U. of Arizona, U. of Tokyo
- DOE ECP project + Argonne A21 NRE project (Intel's source of funding)
- Hierarchical design leveraging HPC community work:
 - Cluster: PowSched/RMAP, SLURM power capping extensions
 - Job/App: Conductor, READEX, **GEOPM**
 - Node: msr-safe, libmsr, Caliper, PowerAPI

GEOPM provides the foundations for PowerStack's dynamic adaptivity, flexibility, application-awareness, scalability, and product quality

EOPM: Role Within PowerStack

- GEOPM = Global Extensible Open Power Manager
- Provides the job-level runtime in PowerStack
 - Global control system
 - Globally coordinates control knob settings across compute nodes in a job which is key to achieving *application-awareness* (esp: addressing load imbalance and variation)
 - Achieves *scalability* via distributed tree-hierarchical design, recursive control/feedback
 - Improves job performance or efficiency via feedback-guided optimization
 - Dynamically tunes HW control settings like node power caps & processor core frequencies
 - Application-aware tuning decisions via on-the-fly application profiling and analysis
 - 10-30% perf upside under power caps -or- 10-20% energy savings with ~5% perf impact (no cap)
 - Extensible framework via plugin architecture
 - Plugins provide *flexibility* to address broad range of Exascale power/energy challenges
 - Plugins can range from improving time-to-solution to improving efficiency to custom
 - Plugins allow easy porting to new hardware architectures (not limited to Intel x86)
 - Production-grade open source software that is backed by Intel

GEOPM Beta is Available Now Coming soon: General Availability on Iota/Theta

GEOPM Beta is out now at <u>geopm.github.io</u>, released ahead of ISC'18 GEOPM v1.0 trending to be released before end of year