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AGENDA

§ Overview
§ Two modes to use CrayPat

– “LITE” mode
– In-depth analysis

§ Performance counters
§ CrayPat API
§ Apprentice2
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CRAY PERFORMANCE ANALYSIS TOOLS

§ Whole program performance analysis with

– Novice and advanced user interfaces

– Support for MPI, SHMEM, OpenMP, UPC, CAF

– Load imbalance detection

– HW counter metrics (hit rates, computational intensity, etc.)

– Observations and inefficiencies

– Data correlation to user source

§ Sampling, tracing with runtime summarization, full trace (timeline) mode 

available

§ Support CCE, Intel and GCC compilers

§ Apprentice2 provides visual interface to performance data
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TWO MODES OF USE

§ CrayPat-lite for novice users, or convenience

§ CrayPat for in-depth performance investigation and tuning assistance

§ Both offer:
– Whole program analysis across many nodes
– Indication of causes of problems
– Suggestions of modifications for performance improvement
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“LITE” MODE



“LITE” MODE

§ Load performance tools instrumentation module

§ Build program (no modification to makefile)

§ Run program (no modification to batch script)
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$ module unload darshan
$ module load perftools-base 
$ module load perftools-lite

$ make $ a.out (instrumented program)

$ aprun a.out Condensed report to stdout
a.out*.rpt (same as stdout)
a.out*.ap2 files

If you use “PrgEnv-intel” module, you will need to load “gcc” 
module in addition. Your application will use Intel Compilers, but 
CrayPat still needs some header files from GNU compilers.
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EXAMPLE CRAYPAT-LITE OUTPUT
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IDENTIFY HIGH TIME CONSUMING AREAS
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§ Maximize on-node communications 
and minimize inter-node 
communications

§ “Observations” in output helps detect 
point-to-point MPI communication and 
suggests ways to reorder MPI ranks 
to reduce inter-node communication 

§ In addition to other files, a 
MPICH_RANK_ORDER is produced 
in the subdirectory 

§ If CrayPat-lite decides work is well 
balanced across the nodes, it will not 
be produced 

MPI RANK REORDERING
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MEMORY TRAFFICS AND FILE I/O



DATA FROM PAT_REPORT

§ Default reports are intended to be useful for most applications

§ Don’t need to rerun program to get more detailed data

§ Different aggregations, or levels of information available
– Get fine-grained thread-imbalance information for OpenMP program

• $ pat_report –s pe=ALL –s th=ALL
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MORE IN-DEPTH ANALYSIS AND
BOTTLENECK DETECTION



HOW TO USE CRAYPAT

§ Update modules and build your application

§ Instrumentation example:

§ Run program

§ Create report

13

$ module unload darshan
$ module load perftools-base perftools
$ make

$ pat_build my_program

$ aprun my_program+pat

$ pat_report my_program.xf > my_report

If you use “PrgEnv-intel” module, you will need to load “gcc” 
module in addition. Your application will use Intel Compilers, but 
CrayPat still needs some header files from GNU compilers.



PAT_BUILD

§ No special flags required in general (e.g., -g is not required)
§ With any optimization flag (e.g., -O0, -O1, -O2, -O3)

§ Instrumentation options
– For the default Automatic Profiling Analysis, $ pat_build my_program
– For predefined trace groups, $ pat_build –g tracegroup my_program
– For enabling tracing and the CrayPat API, $ pat_build –w my_program
– For instrumenting a single function, $ pat_build –T tracefunc my_program
– For instrumenting a list of functions, $ pat_build –t tracefile my_program
– This produces the instrumented executable my_program+pat
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SAMPLE VS TRACE

§ Sample mode
– Checks program counter and call stack 100 times per second
– Minimal effect on execution

§ Trace mode
– Trace code inserted
– Other information such as MPI message size
– Cray compiler only – loops and loop lengths
– Trace of small routines affects runtime

§ Trace routines from sample run
– Two step approach – sample, and then trace
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PREDEFINED TRACE WRAPPERS

§ blas Basic Linear Algebra subprograms
§ caf Co-Array Fortran (Cray CCE compiler only)
§ hdf5 manages extremely large data collection

§ heap dynamic heap
§ io includes stdio and sysio group

§ lapack Linear Algebra Package
§ math ANSI math
§ mpi MPI

§ omp OpenMP API
§ pthreads POSIX threads

§ shmem SHMEM
§ sysio I/O system calls
§ system system calls

§ upc Unified Parallel C (Cray CCE compiler only)
For a full list, please see pat_build(1) man page
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(-g tracegroup)



CONTROL DATA COLLECTION W/ RUNTIME OPTIONS

§ Runtime controlled through PAT_RT_XXX environment variables

§ Examples of control
– Enable full trace
– Change number of data files created
– Enable collection of CPU, network or power counter events
– Enable tracing filters to control trace file size (max threads, max call stack depth, etc.)

§ Cray supports raw counters, derived metrics and thresholds for:
– Processor (core and uncore)
– Network
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PERFORMANCE COUNTERS OVERVIEW

§ papi counters (see via pat_help or papi_avail on a compute node)
§ 132 native counters (see via pat_help or papi_native_avail on a compute node)
§ 41 derived counters (see pat_help)
§ 6 predefined groups (see pat_help)

– Groups together counters for experiments
• 0: Cycles and instructions with LLC misses and references
• _FIXED: Cycles and instructions always available
• hbm: L2 cache misses and FE stall cycles
• mem_bw: memory bandwidth dram and mcdran
• mem_bw_dram: dram bandwidth near and far
• mem_bw_mcdram: mcdram bandwidth near and far

Set PAT_RT_PERFCTR environment variable
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CRAYPAT API

§ Focusing on a certain region within the code, either to reduce sampling overhead, reduce 

data file size, or because only a particular region is of interest

§ Inserting calls into the program source

§ Turning data capture on and off at key points during program execution

§ Header files

– pat_api.h for C 

– pat_apif.h or pat_apif77.h for Fortran

§ Compiler macro, CRAY_PAT from the perftools-base module

#if defined (CRAY_PAT)
<CrayPat API calls>

#endif
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CRAYPAT API

§ PAT_record(int state)
– Setting the recording state to 

PAT_STATE_ON or PAT_STATE_OFF
§ PAT_region_begin(int id, const char *label) 
§ PAT_region_end(int id)

– Defines the boundaries of a region
– Regions must be either separate or 

nested 

API calls in C syntax
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[an example]
PAT_record(PAT_STATE_ON);

PAT_region_begin(1, “task_region-1”);
<tasks;>

PAT_region_end(1);

PAT_region_begin(2, “task_region-2”);
<tasks;>

PAT_region_end(2);

PAT_record(PAT_STATE_OFF);



CRAYPAT API EXAMPLES
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A Fortran example A C example



APPRENTICE2



CRAY APPRENTICE2

§ A GUI tool for visualizing and manipulating the performance analysis data 
captured during program execution
– Use pat_report to open the initial .xf data file(s) and generate the .ap2 file(s)
– Use Cray Apprentice2 to open and explore the .ap2 file(s) in further detail.

§ An example on a login node on Theta
$ module unload darshan 
$ module load perftools-base perftools
$ app2
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APP2
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APP2
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ECP proxy application, Laghos on Theta 
By ALCF undergraduate intern, Michael Simon (2019)
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ECP proxy application, Laghos on Theta 
By ALCF undergraduate intern, Michael Simon (2019)
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APP2
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ECP proxy application, Laghos on Theta 
By ALCF undergraduate intern, Michael Simon (2019)

The default MPI partitioning An optimal MPI partitioning



SUMMARY

§ Two modes to use CrayPat
– “Lite” mode
– In-depth analysis

§ Performance counters
§ CrayPat API
§ Apprentice2

§ ALCF CrayPat user-guide: https://www.alcf.anl.gov/support-center/theta/craypat
§ For more supports, please reach out to JaeHyuk Kwack (jkwack@anl.gov) or 

ALCF Performance Engineering Group
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https://www.alcf.anl.gov/support-center/theta/craypat
mailto:jkwack@anl.gov


THANK YOU!


