
2020 VIRTUAL ALCF COMPUTATIONAL PERFORMANCE WORKSHOP

CRAY PERFORMANCE 
ANALYSIS TOOLS
(CRAYPAT)

erhtjhtyhy

JAEHYUK KWACK
Argonne Leadership Computing Facility

May 6, 2020



AGENDA

§ Overview
§ Two modes to use CrayPat

– “LITE” mode
– In-depth analysis

§ Performance counters
§ CrayPat API
§ Apprentice2

2



CRAY PERFORMANCE ANALYSIS TOOLS

§ Whole program performance analysis with

– Novice and advanced user interfaces

– Support for MPI, SHMEM, OpenMP, UPC, CAF

– Load imbalance detection

– HW counter metrics (hit rates, computational intensity, etc.)

– Observations and inefficiencies

– Data correlation to user source

§ Sampling, tracing with runtime summarization, full trace (timeline) mode 

available

§ Support CCE, Intel and GCC compilers

§ Apprentice2 provides visual interface to performance data

3



TWO MODES OF USE

§ CrayPat-lite for novice users, or convenience

§ CrayPat for in-depth performance investigation and tuning assistance

§ Both offer:
– Whole program analysis across many nodes
– Indication of causes of problems
– Suggestions of modifications for performance improvement

4



“LITE” MODE



“LITE” MODE

§ Load performance tools instrumentation module

§ Build program (no modification to makefile)

§ Run program (no modification to batch script)

6

$ module unload darshan
$ module load perftools-base 
$ module load perftools-lite

$ make $ a.out (instrumented program)

$ aprun a.out Condensed report to stdout
a.out*.rpt (same as stdout)
a.out*.ap2 files

If you use “PrgEnv-intel” module, you will need to load “gcc” 
module in addition. Your application will use Intel Compilers, but 
CrayPat still needs some header files from GNU compilers.



7

EXAMPLE CRAYPAT-LITE OUTPUT



8

IDENTIFY HIGH TIME CONSUMING AREAS



9

§ Maximize on-node communications 
and minimize inter-node 
communications

§ “Observations” in output helps detect 
point-to-point MPI communication and 
suggests ways to reorder MPI ranks 
to reduce inter-node communication 

§ In addition to other files, a 
MPICH_RANK_ORDER is produced 
in the subdirectory 

§ If CrayPat-lite decides work is well 
balanced across the nodes, it will not 
be produced 

MPI RANK REORDERING



10

MEMORY TRAFFICS AND FILE I/O



DATA FROM PAT_REPORT

§ Default reports are intended to be useful for most applications

§ Don’t need to rerun program to get more detailed data

§ Different aggregations, or levels of information available
– Get fine-grained thread-imbalance information for OpenMP program

• $ pat_report –s pe=ALL –s th=ALL

11



MORE IN-DEPTH ANALYSIS AND
BOTTLENECK DETECTION



HOW TO USE CRAYPAT

§ Update modules and build your application

§ Instrumentation example:

§ Run program

§ Create report

13

$ module unload darshan
$ module load perftools-base perftools
$ make

$ pat_build my_program

$ aprun my_program+pat

$ pat_report my_program.xf > my_report

If you use “PrgEnv-intel” module, you will need to load “gcc” 
module in addition. Your application will use Intel Compilers, but 
CrayPat still needs some header files from GNU compilers.



PAT_BUILD

§ No special flags required in general (e.g., -g is not required)
§ With any optimization flag (e.g., -O0, -O1, -O2, -O3)

§ Instrumentation options
– For the default Automatic Profiling Analysis, $ pat_build my_program
– For predefined trace groups, $ pat_build –g tracegroup my_program
– For enabling tracing and the CrayPat API, $ pat_build –w my_program
– For instrumenting a single function, $ pat_build –T tracefunc my_program
– For instrumenting a list of functions, $ pat_build –t tracefile my_program
– This produces the instrumented executable my_program+pat

14



SAMPLE VS TRACE

§ Sample mode
– Checks program counter and call stack 100 times per second
– Minimal effect on execution

§ Trace mode
– Trace code inserted
– Other information such as MPI message size
– Cray compiler only – loops and loop lengths
– Trace of small routines affects runtime

§ Trace routines from sample run
– Two step approach – sample, and then trace

15



PREDEFINED TRACE WRAPPERS

§ blas Basic Linear Algebra subprograms
§ caf Co-Array Fortran (Cray CCE compiler only)
§ hdf5 manages extremely large data collection

§ heap dynamic heap
§ io includes stdio and sysio group

§ lapack Linear Algebra Package
§ math ANSI math
§ mpi MPI

§ omp OpenMP API
§ pthreads POSIX threads

§ shmem SHMEM
§ sysio I/O system calls
§ system system calls

§ upc Unified Parallel C (Cray CCE compiler only)
For a full list, please see pat_build(1) man page

16

(-g tracegroup)



CONTROL DATA COLLECTION W/ RUNTIME OPTIONS

§ Runtime controlled through PAT_RT_XXX environment variables

§ Examples of control
– Enable full trace
– Change number of data files created
– Enable collection of CPU, network or power counter events
– Enable tracing filters to control trace file size (max threads, max call stack depth, etc.)

§ Cray supports raw counters, derived metrics and thresholds for:
– Processor (core and uncore)
– Network

17



PERFORMANCE COUNTERS OVERVIEW

§ papi counters (see via pat_help or papi_avail on a compute node)
§ 132 native counters (see via pat_help or papi_native_avail on a compute node)
§ 41 derived counters (see pat_help)
§ 6 predefined groups (see pat_help)

– Groups together counters for experiments
• 0: Cycles and instructions with LLC misses and references
• _FIXED: Cycles and instructions always available
• hbm: L2 cache misses and FE stall cycles
• mem_bw: memory bandwidth dram and mcdran
• mem_bw_dram: dram bandwidth near and far
• mem_bw_mcdram: mcdram bandwidth near and far

Set PAT_RT_PERFCTR environment variable

18



CRAYPAT API

§ Focusing on a certain region within the code, either to reduce sampling overhead, reduce 

data file size, or because only a particular region is of interest

§ Inserting calls into the program source

§ Turning data capture on and off at key points during program execution

§ Header files

– pat_api.h for C 

– pat_apif.h or pat_apif77.h for Fortran

§ Compiler macro, CRAY_PAT from the perftools-base module

#if defined (CRAY_PAT)
<CrayPat API calls>

#endif
19



CRAYPAT API

§ PAT_record(int state)
– Setting the recording state to 

PAT_STATE_ON or PAT_STATE_OFF
§ PAT_region_begin(int id, const char *label) 
§ PAT_region_end(int id)

– Defines the boundaries of a region
– Regions must be either separate or 

nested 

API calls in C syntax

20

[an example]
PAT_record(PAT_STATE_ON);

PAT_region_begin(1, “task_region-1”);
<tasks;>

PAT_region_end(1);

PAT_region_begin(2, “task_region-2”);
<tasks;>

PAT_region_end(2);

PAT_record(PAT_STATE_OFF);



CRAYPAT API EXAMPLES

21

A Fortran example A C example



APPRENTICE2



CRAY APPRENTICE2

§ A GUI tool for visualizing and manipulating the performance analysis data 
captured during program execution
– Use pat_report to open the initial .xf data file(s) and generate the .ap2 file(s)
– Use Cray Apprentice2 to open and explore the .ap2 file(s) in further detail.

§ An example on a login node on Theta
$ module unload darshan 
$ module load perftools-base perftools
$ app2

23



APP2

24



APP2

25

ECP proxy application, Laghos on Theta 
By ALCF undergraduate intern, Michael Simon (2019)



APP2

26

ECP proxy application, Laghos on Theta 
By ALCF undergraduate intern, Michael Simon (2019)



APP2

27

ECP proxy application, Laghos on Theta 
By ALCF undergraduate intern, Michael Simon (2019)



APP2

28

ECP proxy application, Laghos on Theta 
By ALCF undergraduate intern, Michael Simon (2019)



APP2

29

ECP proxy application, Laghos on Theta 
By ALCF undergraduate intern, Michael Simon (2019)



APP2

30

ECP proxy application, Laghos on Theta 
By ALCF undergraduate intern, Michael Simon (2019)

MPI rank (destination)

M
PI

 ra
nk

 (s
ou

rc
e)

The default MPI partitioning An optimal MPI partitioning

MPI rank (destination)
M

PI
 ra

nk
 (s

ou
rc

e)



APP2

31

ECP proxy application, Laghos on Theta 
By ALCF undergraduate intern, Michael Simon (2019)

The default MPI partitioning An optimal MPI partitioning



SUMMARY

§ Two modes to use CrayPat
– “Lite” mode
– In-depth analysis

§ Performance counters
§ CrayPat API
§ Apprentice2

§ ALCF CrayPat user-guide: https://www.alcf.anl.gov/support-center/theta/craypat
§ For more supports, please reach out to JaeHyuk Kwack (jkwack@anl.gov) or 

ALCF Performance Engineering Group

32

https://www.alcf.anl.gov/support-center/theta/craypat
mailto:jkwack@anl.gov


THANK YOU!


