

Future ALCF Systems

Argonne Leadership Computing Facility

2021 Computational Performance Workshop, May 4-6

Scott Parker

www.anl.gov

Aurora: A High-level View

☐ Intel-HPE machine arriving at Argonne in 2022

☐ Sustained Performance ≥ 1Exaflops DP

- ☐ Compute Nodes
 - ☐ 2 Intel Xeons (Sapphire Rapids)
 - ☐ 6 Intel X^e GPUs (Ponte Vecchio [PVC])
 - □ Node Performance > 130 TFlops
- System
 - HPE Cray XE Platform
 - ☐ Greater than 10 PB of total memory
 - ☐ HPE Slingshot network
- ☐ Fliesystem
 - ☐ Distributed Asynchronous Object Store (DAOS)
 - \supseteq 230 PB of storage capacity; \ge 25 TB/s
 - Lustre
 - ☐ 150PB of storage capacity; ~1 TB/s

The Evolution of Intel GPUs

The Evolution of Intel GPUs

XE Execution Unit

- ☐ The EU executes instructions
 - Register file
 - Multiple issue ports
 - Vector pipelines
 - ☐ Float Point
 - Integer
 - Extended Math
 - ☐ FP 64 (optional)
 - ☐ Matrix Extension (XMX) (optional)
 - Thread control
 - Branch
 - ☐ Send (memory)

XE Subslice

- ☐ A sub-slice contains:
 - ☐ 16 EUs
 - ☐ Thread dispatch
 - Instruction cache
 - ☐ L1, texture cache, and shared local memory
 - Load/Store
 - ☐ Fixed Function (optional)
 - 3D Sampler
 - Media Sampler
 - Ray Tracing

XE 3D/Compute Slice

- A slice contains
 - ☐ Variable number of subslices
 - 3D Fixed Function (optional)
 - Geometry
 - Raster

High Level Xe Architecture

- ☐X^e GPU is composed of
 - □ 3D/Compute Slice
 - Media Slice
 - Memory Fabric / Cache

Aurora Compute Node

- 6 X^e Architecture based GPUs (Ponte Vecchio)
 - All to all connection
 - Low latency and high bandwidth
- 2 Intel Xeon (Sapphire Rapids) processors
- Unified Memory Architecture across CPUs and GPUs
- 8 Slingshot Fabric endpoints

HPE Slingshot Network

- Slingshot is next generation scalable interconnect by HPE Cray
 - 8th major generation
- Slingshot introduces:
 - Congestion management
 - Traffic classes
 - 3 hop dragonfly

Distributed Asynchronous Object Store (DAOS)

- ■Primary storage system for Aurora
- Offers high performance in bandwidth and IO operations
 - ☐ 230 PB capacity
 - □ ≥ 25 TB/s
- ■Provides a flexible storage API that enables new I/O paradigms
- Provides compatibility with existing I/O models such as POSIX, MPI-IO and HDF5
- ☐ Open source storage solution

Pre-exascale and Exascale US Landscape

System	Delivery	CPU + Accelerator Vendor
Summit	2018	IBM + NVIDIA
Sierra	2018	IBM + NVIDIA
Perlmutter	2021	AMD + NVIDIA
Frontier	2021	AMD + AMD
Aurora	2022	Intel + Intel
El Capitan	2023	AMD + AMD

- Heterogenous Computing (CPU + Accelerator)
- Varying vendors

Heterogenous System Programming Models

- Applications will be using a variety of programming models for Exascale:
 - CUDA
 - OpenCL
 - HIP
 - OpenACC
 - OpenMP
 - □ DPC++/SYCL
 - Kokkos
 - Raja
- □ Not all systems will support all models

Available Aurora Programming Models

- ☐ Aurora applications may use:
 - -CUDA
 - OpenCL
 - ☐ HIP
 - OpenACC
 - OpenMP
 - □ DPC++/SYCL
 - Kokkos
 - Raja

Mapping of Existing Programming Models to Aurora

oneAPI

- Industry specification from Intel (https://www.oneapi.com/spec/)
 - Language and libraries to target programming across diverse architectures (DPC++, APIs, low level interface)
- Intel oneAPI products and toolkits (https://software.intel.com/ONEAPI)
 - Languages
 - Fortran (w/ OpenMP 5)
 - C/C++ (w/ OpenMP 5)
 - DPC++
 - Python
 - Libraries
 - oneAPI MKL (oneMKL)
 - oneAPI Deep Neural Network Library (oneDNN)
 - oneAPI Data Analytics Library (oneDAL)
 - MPI
 - Tools
 - Intel Advisor
 - Intel VTune
 - Intel Inspector

https://software.intel.com/oneapi

DPC++ (Data Parallel C++) and SYCL

- ☐ SYCL
 - ☐ Khronos standard specification
 - □ SYCL is a C++ based abstraction layer (standard C++11)
 - ☐ Builds on OpenCL **concepts** (but single-source)
 - □ SYCL is designed to be as close to standard C++ as possible
- ☐ Current Implementations of SYCL:
 - □ ComputeCPP™ (www.codeplay.com)
 - ☐ Intel SYCL (github.com/intel/llvm)
 - □ triSYCL (github.com/triSYCL/triSYCL)
 - □ hipSYCL (github.com/illuhad/hipSYCL)
 - Runs on today's CPUs and nVidia, AMD, Intel GPUs

DPC++ (Data Parallel C++) and SYCL

- ☐ SYCL
 - Khronos standard specification
 - □ SYCL is a C++ based abstraction layer (standard C++11)
 - ☐ Builds on OpenCL **concepts** (but single-source)
 - □ SYCL is designed to be as close to standard C++ as possible
- ☐ Current Implementations of SYCL:
 - □ ComputeCPP™ (www.codeplay.com)
 - ☐ Intel SYCL (github.com/intel/llvm)
 - □ triSYCL (github.com/triSYCL/triSYCL)
 - □ hipSYCL (github.com/illuhad/hipSYCL)
 - ☐ Runs on today's CPUs and nVidia, AMD, Intel GPUs
- □ DPC++
 - ☐ Part of Intel oneAPI specification
 - ☐ Intel extension of SYCL to support new innovative features
 - Incorporates SYCL 1.2.1 specification and Unified Shared Memory
 - Add language or runtime extensions as needed to meet user needs

Extensions	Description
Unified Shared Memory (USM)	defines pointer-based memory accesses and management interfaces.
In-order queues	defines simple in-order semantics for queues, to simplify common coding patterns.
Reduction	provides reduction abstraction to the ND-range form of parallel_for.
Optional lambda name	removes requirement to manually name lambdas that define kernels.
Subgroups	defines a grouping of work-items within a work-group.
Data flow pipes	enables efficient First-In, First-Out (FIFO) communication (FPGA-only)

https://spec.oneapi.com/oneAPI/Elements/dpcpp/dpcpp_root.html#extensions-table_19

DPC++ (Data Parallel C++) and SYCL

- ☐ SYCL
 - Khronos standard specification
 - □ SYCL is a C++ based abstraction layer (standard C++11)
 - ☐ Builds on OpenCL **concepts** (but single-source)
 - □ SYCL is designed to be as close to standard C++ as possible
- ☐ Current Implementations of SYCL:
 - □ ComputeCPP™ (www.codeplay.com)
 - ☐ Intel SYCL (github.com/intel/llvm)
 - □ triSYCL (github.com/triSYCL/triSYCL)
 - hipSYCL (github.com/illuhad/hipSYCL)
 - Runs on today's CPUs and nVidia, AMD, Intel GPUs
- □ DPC++
 - ☐ Part of Intel oneAPI specification
 - ☐ Intel ex
 - ☐ Incorp Memo
 - specification released in February 202

Many DPC++ extensions included in SYC

□ Add l needs

Extensions	Description	
Unified Shared	defines pointer-based memory accesses	
Memory (USM)	and management interfaces.	
In-order queues	defines simple in-order semantics for queues, to simplify common coding patterns.	
	provides reduction abstraction to the ND-	
Reduction	range form of parallel_for.	
L 2020	removes requirement to manually name lambdas that define kernels.	
21.	defines a grouping of work-items within a work-group.	
	enables efficient First-In, First-Out (FIFO)	
Data flow pipes	communication (FPGA-only)	

https://spec.oneapi.com/oneAPI/Elements/dpcpp/dpcpp_root.html#extensions-table_20

OpenMP 5

- OpenMP 5 constructs will provide directives based programming model for Intel GPUs
- ☐ Available for C, C++, and Fortran
- ☐ A portable model expected to be supported on a variety of platforms (Aurora, Frontier, Perlmutter, ...)
- Optimized for Aurora
- ☐ For Aurora, OpenACC codes could be converted into OpenMP
 - ☐ ALCF staff will assist with conversion, training, and best practices
 - ☐ Automated translation possible through the clacc conversion tool (for C/C++)

https://www.openmp.org/

Intel Fortran for Aurora

- Fortran 2008
- OpenMP 5
- ■New compiler—LLVM backend
 - ☐ Strong Intel history of optimizing Fortran compilers
- ☐ Beta available today in OneAPI toolkits

https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/fortran-compiler.html

POLARIS

System Spec	Polaris
Planned Installation / Production	Q2CY2021 / Q3CY2021
System Peak (PF)	35-45
Peak Power (MW)	<2
Total System Memory (TB)	>250
System Memory Type	DDR, HBM
Node Performance (TF)	>70
Node Processors	1 CPU; 4 GPUs
System Size (nodes)	>500
Node-to-Node Interconnect	200Gb

Programming Models

- OpenMP 4.5/5
- SYCL
- Kokkos
- Raja
- HiP

