
Data Parallel Essentials for Python:
Bringing oneAPI to python

Praveen Kundurthy

Numba Data parallel Python

What is Data parallel Python?

2Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Numba-Dpex
• Agenda

• Overview of oneAPI

• Overview of Intel® oneAPI AI Analytics Toolkit

• Introduction to Numba-Data parallel extension (numba-dpex)

• Introduction to Data Parallel Control (dpctl)

• Device offloading using dpctl

• Introduce to @njit decorator and @kernel decorator

• Hands On Intel® DevCloud / JLSE

• Automatic offload using @njit

• Explicit Parallel offload using @njit

• Dpctl Demo

• Compute follows data approach

3Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Growth in specialized workloads

Variety of data-centric hardware required

Separate programming models and toolchains for each
architecture are required today

Software development complexity limits freedom of
architectural choice

Programming Challenges
for Multiple Architectures

Scalar Vector Spatial Matrix

Middleware & Frameworks

XPUs

Application Workloads Need Diverse Hardware

CPU
programming

model

GPU
programming

model

FPGA
programming

model

Other accel.
programming

models

CPU GPU FPGA Other accel.

4Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Cross-architecture programming that delivers freedom
to choose the best hardware

Based on industry standards and open specifications

Exposes cutting-edge performance features of latest
hardware

Compatible with existing high-performance languages
and programming models including C++, OpenMP,
Fortran, and MPI

Introducing

oneAPI

Industry
Initiative

Intel
Product

Scalar Vector Spatial Matrix

Middleware & Frameworks

XPUs

Application Workloads Need Diverse Hardware

CPU GPU FPGA Other accel.

5Intel Confidential

6Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

AI Software Stack for Intel XPUs
Intel offers a Robust Software Stack to Maximize Performance of Diverse Workloads

pandas Scikit-
learn

numba

numpy

xgboost PyTorchTensorFlow
DL/ML

Middleware &
Frameworks

DL/ML Tools

oneDNNoneCCLoneDAL

Model Zoo for
Intel®

Architecture

SYCL/
numba-

dppy

Libraries &
Compiler

Part of the
Intel® oneAPI Base Toolkit

Open Model
Zoo

Modin daal4Pyscipy

oneMKL oneTBB oneVPL

E2E Workloads
(Census, NYTaxi,

Mortgage…)

Model Optimizer
&

Inference Engine

Intel® Low
Precision

Optimization
Tool

7

Data Parallel Essentials for Python

XPUs

CPU GPU FPGA Other accel.

• • •

XPU-Optimized Libraries Compiler for XPUs

API-BASED PROGRAMMING DIRECT PROGRAMMING

dpctl dpnptensor Numba-
dpex

Data Parallel
Essentials for Python

PyData Ecosystem

oneAPI + SYCL

Fostering a oneAPI/SYCL-

based ecosystem for PyDATA

dpctl – Data parallel control

8

9

Current Ecosystem

dpctl1
Python bindings for
subset of SYCL

DPC++

dpctl.tensor

Python Data API
compliant array
library based on USM

dpnp Numba-dpex

Scikit-learnex

User-level libraries

2

3
Drop in NumPy replacement JIT Compiler for NumPy, Kernel

programming

Scikit-learn extension for XPU

SYCL Wrapper
classes USM allocators

Cython,
Pybind11 iface

Math Relational Stats

Data Parallel
Essentials for
Python

Wider ecosystem

10

Compute Follows data
Offload Model
- Pythonic offload model following array API spec (https://data-apis.org/array-api/latest/)
- Offload happens where data currently resides (“compute follows data”)

X = dp.array([1,2,3])
Y = X * 4

X = dp.array([1,2,3], device=“gpu:0”)
Y = X * 4

X = dp.array([1,2,3], device=“gpu:0”)
Y = dp.array([1,2,3], device=“gpu:1”)
Z = X + Y

executed on default device executed on “gpu:0” device Error! Arrays are on different devices

11

Programming Model
Compute Follows Data

- Pythonic offload model following array

API spec

- Explicit control over execution based on
data placement

12Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Numba-dpex
 Numba is a Just-in-time compiler for Python for NumPy arrays functions,

and loops to speed up your applications written directly in Python.

 Numba automatically offloads specific data-parallel sections of a Numba jit
function.

 Numba-dpex is a standalone extension to the Numba JIT compiler that
adds SYCL programming capabilities to Numba

13Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

dpctl SyclDevice
 A device represents a specific accelerator in the system.

 Creating a queue for a specific device requires a device_selector.

 This is a python equivalent for cl::sycl::device class
import dpctl

def print_device(d):
"Display information about given device argument."
print("Name: ", d.name)
print("Vendor: ", d.vendor)
print("Driver version: ", d.driver_version)
print("Backend: ", d.backend)
print("Max EU: ", d.max_compute_units)

Create a SyclDevice of type GPU based on whatever is returned
by the SYCL `gpu_selector` device selector class.
d = dpctl.select_cpu_device()
d = dpctl.select_accelerator_device()
d = dpctl.select_host_device()
d = dpctl.select_default_device()
d = dpctl.select_gpu_device():
#d.print_device_info()
print_device(d)

Import dpctl and print
device information

Call Sycl Device of
type GPU

@kernel(access_type={“read_only”: [“a”, “b”], write_only:[“c”]})
def l2_distance(a, b, c)

i = numba_dpex.get_global_id(0)
j = numba_dpex.get_global_id(1)
sub = a[i,j] – b[i,j]
sq = sub ** 2
atomic.add(c, 0, sq)

@njit(parallel=True)
def l2_distance(a, b, c)

return np.sum((a–b)**2)

@njit(parallel=True)
def l2_distance(a, b, c)

s = 0.0
for i in prange(len(a))

s += (a[i]-b[i])**2
return s

Array-style programming Explicit prange (parfor) loops

OpenCl-style kernel programming

NumPy (array) style programming. Requires
minimum code changes to compile existing

Numpy code for XPU.
Parfor-style programming. Preferred by some
users when iteration space requires complex

indexing.
Unique for CPU. Intel extends to XPU via

numba-dpex. No CUDA alternatives to date

Most advanced programming model.
Recommended to get highest performance on

XPU yet avoiding DPC++.
Nvidia @cuda.jit offers this programming

model in Numba

Numba-dpex

15Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Automatic offload using @njit Decorator
import dpctl
import numpy as np
import numba

@numba.njit(parallel=True)
def l2_distance_kernel(a, b):

sub = a - b
sq = np.square(sub)
sum = np.sum(sq)
d = np.sqrt(sum)
return d

def main():
R = 64
C = 1
X = np.random.random((R,C))
Y = np.random.random((R,C))
device = dpctl.select_default_device()
print("Using device ...")
device.print_device_info()
with dpctl.device_context(device):

result = l2_distance_kernel(X, Y)
print("Result :", result)
print("Done...")

if __name__ == "__main__":
main()

Import njit and prange from
numba

Use @njit decorator to directly
detect data parallel kernels using
numpy expressions
Automatic offload mode for
NumPy data-parallel expressions

Use dpctl.device context to
offload this to a device

16Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Explicit parallel for loop - @njit Decorator
import numpy as np
from numba import njit, prange
import dpctl

@njit
def add_two_arrays(b, c):

a = np.empty_like(b)
for i in prange(len(b)):

a[i] = b[i] + c[i]
return a

def main():
N = 10
b = np.ones(N)
c = np.ones(N)
device = dpctl.select_default_device()
with dpctl.device_context(device):

result = add_two_arrays(b, c)

if __name__ == "__main__":
main()

Import njit and prange from
numba

Use @njit decorator to directly
detect data parallel kernels using
numpy expressions
Use prange to specify explicitly a
loop to be parallelized

Use dpctl.device context to
offload this to a device

17Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

@dppy.kernel Decorator
import dpctl
import numba_dppy as dppy
import numpy as np

@dppy.kernel
def data_parallel_sum(a, b, c):

i = dppy.get_global_id(0)
c[i] = a[i] + b[i]

def driver(a, b, c, global_size):
data_parallel_sum[global_size, dppy.DEFAULT_LOCAL_SIZE

](a, b, c)
print("C ", c)

def main():
global_size = 10
N = global_size
print("N", N)
a = np.array(np.random.random(N), dtype=np.float32)
b = np.array(np.random.random(N), dtype=np.float32)
c = np.ones_like(a)
with dpctl.device_context("opencl:gpu"):

driver(a, b, c, global_size)

if __name__ == "__main__":
main()

Import dpctl

Vector addition in parallel using
the @ddpy.kernel decorator

Common way of Kernel invocation

Offload this to a device

18Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Pairwise distance using @dppy.kernel
import dpctl
import numpy as np
import numba_dppy

@numba_dppy.kernel
def pairwise_python(X1, X2, D):

i = numba_dppy.get_global_id(0)

N = X2.shape[0]
O = X1.shape[1]
for j in range(N):

d = 0.0
for k in range(O):

tmp = X1[i, k] - X2[j, k]
d += tmp * tmp

D[i, j] = np.sqrt(d)

def pw_distance(X1, X2, D):
with dpctl.device_context("opencl:gpu"):

pairwise_python[X1.shape[0],numba_dppy.DEFAULT_L
OCAL_SIZE](X1, X2, D)

pairwise_python[X1.shape[0], 128](X1, X2, D)

Import dpctl

Pairwise distance in parallel using
the @ddpy.kernel decorator

Kernel invocation of the Pairwise
distance

Offload this to opencl:gpu

19Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Kmeans using @njit
import dpctl
import numpy
import numba
@numba.jit(nopython=True, parallel=True, fastmath=True)
def groupByCluster(arrayP, arrayPcluster, arrayC, num_points, num_centroids):

for i0 in numba.prange(num_points):
minor_distance = -1
for i1 in range(num_centroids):

dx = arrayP[i0, 0] - arrayC[i1, 0]
dy = arrayP[i0, 1] - arrayC[i1, 1]
my_distance = numpy.sqrt(dx * dx + dy * dy)
if minor_distance > my_distance or minor_distance == -1:

minor_distance = my_distance
arrayPcluster[i0] = i1

return arrayPcluster
@numba.jit(nopython=True, parallel=True, fastmath=True)
def calCentroidsSum(

arrayP, arrayPcluster, arrayCsum, arrayCnumpoint, num_points, num_centroids
):

for i in numba.prange(num_centroids):
arrayCsum[i, 0] = 0
arrayCsum[i, 1] = 0
arrayCnumpoint[i] = 0

for i in range(num_points):
ci = arrayPcluster[i]
arrayCsum[ci, 0] += arrayP[i, 0]
arrayCsum[ci, 1] += arrayP[i, 1]
arrayCnumpoint[ci] += 1

return arrayCsum, arrayCnumpoint
@numba.jit(nopython=True, parallel=True, fastmath=True)
def updateCentroids(arrayC, arrayCsum, arrayCnumpoint, num_centroids):

for i in numba.prange(num_centroids):
arrayC[i, 0] = arrayCsum[i, 0] / arrayCnumpoint[i]
arrayC[i, 1] = arrayCsum[i, 1] / arrayCnumpoint[i]

def kmeans(
arrayP, arrayPcluster, arrayC, arrayCsum, arrayCnumpoint, num_points, num_centroids

):
for i in range(ITERATIONS):

with dpctl.device_context(base_kmeans_gpu.get_device_selector()):
groupByCluster(arrayP, arrayPcluster, arrayC, num_points, num_centroids)

calCentroidsSum(
arrayP, arrayPcluster, arrayCsum, arrayCnumpoint, num_points, num_centroids)

updateCentroids(arrayC, arrayCsum, arrayCnumpoint, num_centroids)
return arrayC, arrayCsum, arrayCnumpoint

def run_kmeans(
arrayP,arrayPclusters,arrayC,arrayCsum,arrayCnumpoint,NUMBER_OF_POINTS,NUMBER_OF_CENTROIDS,):
for i in range(REPEAT):

for i1 in range(NUMBER_OF_CENTROIDS):
arrayC[i1, 0] = arrayP[i1, 0]
arrayC[i1, 1] = arrayP[i1, 1]

arrayC, arrayCsum, arrayCnumpoint = kmeans(
arrayP,arrayPclusters,arrayC,arrayCsum,arrayCnumpoint,NUMBER_OF_POINTS,NUMBER_OF_CENTROIDS,

)

Import dpctl

Kmeans in parallel using the @njit
decorator. Determine the Euclidean
distance from the cluster center to
each point

Assign points to cluster and
update the centroids array after
computation

Offload this to opencl:gpu

Parallel for loops using
numba.prange

20Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Black Scholes using @njit
import dpctl
import numba as nb
from math import log, sqrt, exp, erf

blackscholes implemented as a parallel loop using numba.prange
@nb.njit(parallel=True, fastmath=True)
def black_scholes_kernel(nopt, price, strike, t, rate, vol, call, put):

mr = -rate
sig_sig_two = vol * vol * 2
for i in nb.prange(nopt):

P = price[i]
S = strike[i]
T = t[i]
a = log(P / S)
b = T * mr
z = T * sig_sig_two
c = 0.25 * z
y = 1.0 / sqrt(z)
w1 = (a - b + c) * y
w2 = (a - b - c) * y
d1 = 0.5 + 0.5 * erf(w1)
d2 = 0.5 + 0.5 * erf(w2)
Se = exp(b) * S
r = P * d1 - Se * d2
call[i] = r
put[i] = r - P + Se

def black_scholes(nopt, price, strike, t, rate, vol, call, put):
offload blackscholes computation to GPU (toggle level0 or opencl driv

er).
with dpctl.device_context("level_zero:gpu"):

black_scholes_kernel(nopt, price, strike, t, rate, vol, call, put)

Import dpctl

Black Scholes in parallel using the
@njit decorator

Calculate Calls and puts with the
change in the current price and
the strike price

Offload this to level_zero:gpu

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Learn More at the Intel® DevCloud for oneAPI
Free Access, A Fast Way to Start Coding

A development sandbox to develop, test and
run workloads across a range of Intel® CPUs,
GPUs, and FPGAs using Intel’s oneAPI
software

For customers focused on data-centric
workloads on a variety of Intel® architecture

Evaluate Workloads

Prototype Your Project

Learn Data Parallel C++

Use Intel® oneAPI Toolkits

Build Cross-architecture Applications

No Downloads | No Hardware Acquisition | No Installation | No Set-up & Configuration

Get Up & Running in Seconds!
https://devcloud.intel.com/oneapi/get_started/

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Running Numba_DPPY Essentials on JLSE CLI
1) qsub -n1 -t 180 -q iris –I

2) module use /soft/restricted/CNDA/modulefiles

3) module add oneapi

4) source $IDPROOT/bin/activate

5) conda create -n <NEW_ENV> --clone $AURORA_BASE_ENV

6) conda activate <NEW_ENV>

7) conda install packaging

8) export SYCL_DEVICE_FILTER=opencl

9) git clone https://github.com/IntelSoftware/Numba_DPPY_Essentials.git

10)Navigate to AI-and-Analytics/Jupyter/Numba_DPPY_Essentials_training

23DPC++ Essentials

Hands-on Coding on Intel®
DevCloud / JLSE

24Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

1) Included with the oneAPI install is the Intel Distribution of Python. The base environment does not have Jupyter lab included so it will be necessary
to create a custom python environment.

a. source $IDPROOT/bin/activate

b. Now create a custom environment by cloning your local environment

i. conda create -n <NEW_ENV> --clone $AURORA_BASE_ENV(takes a few mins)

c. To activate the new environment

i. conda activate <NEW_ENV>

ii. conda install packaging (install needed packaging)

iii. export SYCL_DEVICE_FILTER=opencl (set this env variable for the samples to work for opencl gpu driver)

iv. Now you can run the samples in the CLI

d. Optional: Now install Jupyterlab (if you want to try running the samples from the Jupyter folder)

i. conda install -c conda-forge jupyterlab

e. Some of the modules use Ipywidgets (optional)

i. conda install -c conda-forge ipywidgets

2) Launch Jupyter lab

a. Navigate to where you cloned the oneAPI samples repo.

b. Enter: Jupyter-lab --no-browser --port=<default is 8888, randomize this>

c. Make note of the addresses printed to your terminal

25Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

1) Important: From a different local ssh session, separate from the one you used to obtain the
iris node tunnel directly to your iris node. It is assumed that an iris node has been allocated
by a user.

a.It will look like: username@iris<#>

b.example: ssh -v -J jlse -L 8989:localhost:8989 username@iris11

i.Note: the ports need to be free on your local machine

2) You will need to copy the token provided by jupyter lab from your initial ssh session and
paste that into your browser.

a. Open local browser and enter, example:
http://localhost:8989/lab?token=8135de98c....

3) Navigate to Numba_DPPY_Essentials and double click on Welcome.ipynb to get
started.

26Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Summary
• Illustrate How oneAPI Can help solve the challenges of programming in a

heterogeneous world

• How to use Data Parallel Python and Data Parallel Control

• Performed 3 code walkthroughs demonstrating:

• A Pairwise Algorithm using Jit and Kernel decorators on CPU and GPU

• A Kmeans Algorithm using Jit and Kernel decorators on CPU and GPU

• A Gpairs Algorithm using Jit and Kernel decorators on CPU and GPU

• Explored via hands on activities the following algorithms in depth

• Pairwise Algorithm

• Kmeans Algorithm

• Gpairs Algorithm

26

27DPC++ Essentials

Thanks for attending the session

28Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any
optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors.
Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for
more information regarding the specific instruction sets covered by this notice.
Notice revision #20110804

Notices & Disclaimers
 This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your

Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

 The products and services described may contain defects or errors known as errata which may cause deviations from published specifications. Current characterized errata
are available on request. No product or component can be absolutely secure. Intel technologies’ features and benefits depend on system configuration and may require
enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer.

 Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and
MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to
vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products. For more complete information visit www.intel.com/benchmarks.

 INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS
GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

 Copyright ©, Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Core, VTune, and OpenVINO are trademarks of Intel Corporation or its subsidiaries in the U.S. and
other countries.

28

29

