
Data Parallel Essentials for Python:
Bringing oneAPI to python –Part 2

Praveen Kundurthy

Numba Data parallel Python

What is Data parallel Python?

2Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Numba-Dpex
• Agenda

• Overview of oneAPI

• Overview of Intel® oneAPI AI Analytics Toolkit

• Introduction to Numba-Data parallel extension (numba-dpex) and data parallel control
(dpctl)

• Pairwise distance using @njit and @Kernel decorator

• Intel® Extension for Scikit-learn

• Pairwise distance using scikit learn

• Compute follows data approach

• Black Scholes using @njit and @Kernel decorator

• Profiling using Intel® VTune™ Profiler and Intel® Advisor

• Hands On Intel® DevCloud / JLSE

• Pairwise Distance and Blackscholes

3Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Growth in specialized workloads

Variety of data-centric hardware required

Separate programming models and toolchains for each
architecture are required today

Software development complexity limits freedom of
architectural choice

Programming Challenges
for Multiple Architectures

Scalar Vector Spatial Matrix

Middleware & Frameworks

XPUs

Application Workloads Need Diverse Hardware

CPU
programming

model

GPU
programming

model

FPGA
programming

model

Other accel.
programming

models

CPU GPU FPGA Other accel.

4Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Cross-architecture programming that delivers freedom
to choose the best hardware

Based on industry standards and open specifications

Exposes cutting-edge performance features of latest
hardware

Compatible with existing high-performance languages
and programming models including C++, OpenMP,
Fortran, and MPI

Introducing

oneAPI

Industry
Initiative

Intel
Product

Scalar Vector Spatial Matrix

Middleware & Frameworks

XPUs

Application Workloads Need Diverse Hardware

CPU GPU FPGA Other accel.

5Intel Confidential

6Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

AI Software Stack for Intel XPUs
Intel offers a Robust Software Stack to Maximize Performance of Diverse Workloads

pandas Scikit-
learn

numba

numpy

xgboost PyTorchTensorFlow
DL/ML

Middleware &
Frameworks

DL/ML Tools

oneDNNoneCCLoneDAL

Model Zoo for
Intel®

Architecture

SYCL/
numba-

dppy

Libraries &
Compiler

Part of the
Intel® oneAPI Base Toolkit

Open Model
Zoo

Modin daal4Pyscipy

oneMKL oneTBB oneVPL

E2E Workloads
(Census, NYTaxi,

Mortgage…)

Model Optimizer
&

Inference Engine

Intel® Low
Precision

Optimization
Tool

7Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Analyze SYCL
See the lines of SYCL that consume the most time

Tune for Intel CPUs, GPUs & FPGAs
Optimize for any supported hardware accelerator

Optimize Offload
Tune OpenMP offload performance

Wide Range of Performance Profiles
CPU, GPU, FPGA, threading, memory, cache, storage…

Supports Popular Languages
SYCL, C, C++, Fortran, Python, Go, Java, or a mix

There will still be a need to tune for each architecture.

Intel® VTune™ Profiler
SYCL Profiling-Tune for CPU, GPU & FPGA

8Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Offload Advisor
Estimate performance of offloading to an accelerator

Roofline Analysis
Optimize CPU/GPU code for memory and compute

Vectorization Advisor
Add and optimize vectorization

Threading Advisor
Add effective threading to unthreaded applications

Flow Graph Analyzer
Create and analyze efficient flow graphs

Intel® Advisor
Design Assistant - Design for Modern Hardware

There will still be a need to tune for each architecture.

9Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Find Effective Optimization Strategies
Intel® Advisor - GPU Roofline

GPU Roofline Performance Insights

 Highlights poor performing loops

 Shows performance ‘headroom’ for
each loop

– Which can be improved

– Which are worth improving

 Shows likely causes of bottlenecks
– Memory bound vs. compute bound

 Suggests next optimization steps

10Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Learn More at the Intel® DevCloud for oneAPI
Free Access, A Fast Way to Start Coding
A development sandbox to develop, test and
run workloads across a range of Intel® CPUs,
GPUs, and FPGAs using Intel’s oneAPI
software

For customers focused on data-centric
workloads on a variety of Intel® architecture

Evaluate Workloads

Prototype Your Project

Learn Data Parallel C++

Use Intel® oneAPI Toolkits

Build Cross-architecture Applications

No Downloads | No Hardware Acquisition | No Installation | No Set-up & Configuration

Get Up & Running in Seconds!
https://devcloud.intel.com/oneapi/get_started/

11

Data Parallel Essentials for Python

XPUs

CPU GPU FPGA Other accel.

• • •

XPU-Optimized Libraries Compiler for XPUs

API-BASED PROGRAMMING DIRECT PROGRAMMING

dpctl dpnptensor Numba-
dpex

Data Parallel
Essentials for Python

PyData Ecosystem

oneAPI + SYCL

Fostering a oneAPI/SYCL-

based ecosystem for PyDATA

dpctl – Data parallel control

12

13

Current Ecosystem

dpctl1
Python bindings for
subset of SYCL

DPC++

dpctl.tensor

Python Data API
compliant array
library based on USM

dpnp Numba-dpex

Scikit-learnex

User-level libraries

2

3
Drop in NumPy replacement JIT Compiler for NumPy, Kernel

programming

Scikit-learn extension for XPU

SYCL Wrapper
classes USM allocators

Cython,
Pybind11 iface

Math Relational Stats

Data Parallel
Essentials for
Python

Wider ecosystem

14

Compute Follows data
Offload Model
- Pythonic offload model following array API spec (https://data-apis.org/array-api/latest/)
- Offload happens where data currently resides (“compute follows data”)

X = dp.array([1,2,3])
Y = X * 4

X = dp.array([1,2,3], device=“gpu:0”)
Y = X * 4

X = dp.array([1,2,3], device=“gpu:0”)
Y = dp.array([1,2,3], device=“gpu:1”)
Z = X + Y

executed on default device executed on “gpu:0” device Error! Arrays are on different devices

15

Programming Model
Compute Follows Data

- Pythonic offload model following array

API spec

- Explicit control over execution based on
data placement

@kernel(access_type={“read_only”: [“a”, “b”], write_only:[“c”]})
def l2_distance(a, b, c)

i = numba_dpex.get_global_id(0)
j = numba_dpex.get_global_id(1)
sub = a[i,j] – b[i,j]
sq = sub ** 2
atomic.add(c, 0, sq)

@njit(parallel=True)
def l2_distance(a, b, c)

return np.sum((a–b)**2)

@njit(parallel=True)
def l2_distance(a, b, c)

s = 0.0
for i in prange(len(a))

s += (a[i]-b[i])**2
return s

Array-style programming Explicit prange (parfor) loops

OpenCl-style kernel programming

NumPy (array) style programming. Requires
minimum code changes to compile existing

Numpy code for XPU.
Parfor-style programming. Preferred by some
users when iteration space requires complex

indexing.
Unique for CPU. Intel extends to XPU via

numba-dpex. No CUDA alternatives to date

Most advanced programming model.
Recommended to get highest performance on

XPU yet avoiding DPC++.
Nvidia @cuda.jit offers this programming

model in Numba

Numba-dpex

17Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Automatic offload using @njit Decorator
import dpctl
import numpy as np
import numba

@numba.njit(parallel=True)
def l2_distance_kernel(a, b):

sub = a - b
sq = np.square(sub)
sum = np.sum(sq)
d = np.sqrt(sum)
return d

def main():
R = 64
C = 1
X = np.random.random((R,C))
Y = np.random.random((R,C))
device = dpctl.select_default_device()
print("Using device ...")
device.print_device_info()
with dpctl.device_context(device):

result = l2_distance_kernel(X, Y)
print("Result :", result)
print("Done...")

if __name__ == "__main__":
main()

Import njit and prange from
numba

Use @njit decorator to directly
detect data parallel kernels using
numpy expressions
Automatic offload mode for
NumPy data-parallel expressions

Use dpctl.device context to
offload this to a device

18Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Explicit parallel for loop - @njit Decorator
import numpy as np
from numba import njit, prange
import dpctl

@njit
def add_two_arrays(b, c):

a = np.empty_like(b)
for i in prange(len(b)):

a[i] = b[i] + c[i]
return a

def main():
N = 10
b = np.ones(N)
c = np.ones(N)
device = dpctl.select_default_device()
with dpctl.device_context(device):

result = add_two_arrays(b, c)

if __name__ == "__main__":
main()

Import njit and prange from
numba

Use @njit decorator to directly
detect data parallel kernels using
numpy expressions
Use prange to specify explicitly a
loop to be parallelized

Use dpctl.device context to
offload this to a device

19Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

@dppy.kernel Decorator
import dpctl
import numba_dppy as dppy
import numpy as np

@dppy.kernel
def data_parallel_sum(a, b, c):

i = dppy.get_global_id(0)
c[i] = a[i] + b[i]

def driver(a, b, c, global_size):
data_parallel_sum[global_size, dppy.DEFAULT_LOCAL_SIZE

](a, b, c)
print("C ", c)

def main():
global_size = 10
N = global_size
print("N", N)
a = np.array(np.random.random(N), dtype=np.float32)
b = np.array(np.random.random(N), dtype=np.float32)
c = np.ones_like(a)
with dpctl.device_context("opencl:gpu"):

driver(a, b, c, global_size)

if __name__ == "__main__":
main()

Import dpctl

Vector addition in parallel using
the @ddpy.kernel decorator

Common way of Kernel invocation

Offload this to a device

20Machine Learning using oneAPI

What Categories of AI are covered?

21Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Types of Machine Learning

data points have known outcome

data points have unknown outcomeUnsupervised

Supervised

22Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Types of Supervised Learning

Regression

Classification

outcome is continuous (numerical)

outcome is a category

Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Dimensionality
Reduction

Types of Unsupervised Learning

identify unknown structure in data

use structural characteristics to simplify data

Clustering

24Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Classification & Regression

• Have features in a dataset “X”

• Have targets in a column “y”

• Goal: learn to predict “y”

• Classification: discrete targets (“cats”, “dogs”, “hair”)

• Regression: continuous targets (12.37, -15.2, 98.6)

Supervised Learning Overview

data with
answers

model

predicted
answers

data without
answers

fit

+

+

predict
model

model

Regression: Numeric Answers

movie data
with

revenue
model

predicted
revenue

movie data
(unknown
revenue)

fit

+

+

predict
model

model

Classification: Categorical Answers

labeled
data model

labelsunlabeled data

fit

+

+

predict
model

model

Classification: Categorical Answers

emails labeled as
spam/not spam

model

spam or not
spam

unlabeled
emails

fit

+

+

model

model

predict

What is Classification?

?

Which flower is a customer most
likely to purchase based on
similarity to previous purchase?

What is Needed for Classification?

• Model data with:

• Features that can be quantitated

• Labels that are known

• Method to measure similarity

Number of Malignant Nodes
0

Age

60

K Nearest Neighbors Classification

40

20

10 20

Survived

Did not survive

K Nearest Neighbors Classification
Neighbor Count (K = 3): 2 1

Number of Malignant Nodes
0

Age

60

Predict

40

20

10 20

K Nearest Neighbors Classification
Neighbor Count (K = 4): 3 1

Number of Malignant Nodes
0

Age

60

Predict

40

20

10 20

• Correct value for 'K'

• How to measure closeness of neighbors?

What is Needed to Select a KNN Model?

Number of Malignant Nodes
0

Age

60

40

20

10 20

Number of Malignant Nodes
0

Age

60

40

20

10 20

Measurement of Distance in KNN

Number of Malignant Nodes

Age

Euclidean Distance

Number of Malignant Nodes

Age

Euclidean Distance (L2 Distance)

∆ Age
d

∆ Nodes
ଶ ଶ

Number of Malignant Nodes

Age ∆ Age

∆ Nodes

Manhattan Distance (L1 or City Block Distance)

39Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Introduction to patching
• Intel® Extension for Scikit-learn* provides a way to accelerate existing scikit-learn code.

• In code, we will import sklearnex – this is the python library name for Intel Extensions for
Scikit-learn*

• Via patching: replacing the stock scikit-learn algorithms with their optimized versions
provided by the extension.

• You may enable patching in different ways:

• Without editing the code: using a command line flag

• Within code: using an import and a function call

• Un-patching: using methods to follow
• k

40Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Patching Alternatives

• Command line:

• Inside script or Jupyter Notebook:

from sklearnex import patch_sklearn
patch_sklearn()

python -m sklearnex my_application.py

41Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

K Nearest Neighbor: The Syntax

from sklearnex import patch_sklearn
patch_sklearn() # apply BEFORE import of targets

from sklearn.linear_model import KNeighborsClassifier

Import sklearnex

Apply “monkey patch”

Import desired sklearn
algorithms AFTER the
patch

Create an instance of the class

KNN = KNeighborsClassifier(n_neighbors=3, n_jobs=-1)

Fit the instance on the data and then predict the

expected value

KNN = KNN.fit(X_data, y_data)

y_predict = KNN.predict(X_data)

42Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Pairwise Distance

43Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Pairwise Distance

X2

X1

2

1

3

4

5

44Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Pairwise Distance

d12 px1 px2
ଶ py1 py2 ଶ

X2

X1

2

1

3

4

5

d12

d12 px1 px2
ଶ py1 py2

ଶ

45Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Pairwise Distance

X2

X1

2

1

3

4

5

d13 px1 px3
ଶ py1 py3

ଶ

d13

46Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Pairwise Distance

X2

X1

2

1

3

4

5

d14 px1 px4
ଶ py1 py4

ଶ

d14

47Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Pairwise Distance

X2

X1

2

1

3

4

5

d15 px1 px5
ଶ py1 py5

ଶ

d15

48Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Pairwise Distance

X2

X1

2

1

3

4

5

d23 px2 px3
ଶ py2 py3

ଶ

d23

49Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Pairwise Distance

• .

• .

• .

X2

X1

2

1

3

4

5

…
…
…...

...
...

Number of Malignant Nodes

Age

Euclidean Distance (L2 Distance)

∆ Age
d

∆ Nodes
ଶ ଶ

NOT currently optimized by Intel Extensions for scikit-learn

Cosine Distance = 1 -

Cosine Distance

A

Optimized by Intel Extensions for scikit-learn

B

Cosine Distance = 1 -

(Ax x Bx + Ay x By + …)

length(A) x length(B)

Cosine Distance

A

Optimized by Intel Extensions for scikit-learn

B

Cosine Distance = 1 -
(Ax x Bx + Ay x By + …)

length(A) x length(B)

A = [3, 4]
B = [5, 12]

length(A) = sqrt(3 x 3 + 4 x 4) = 5

length(B) = sqrt(5 x 5 + 12 x 12) = 13

Cosine Distance = 1 - cos θ
Cosine Distance = 1 - (3 x 5 + 4 x 12) / (5 x 13)
Cosine Distance = 1 - 0.969 = .031

Correlation Distance

A

Optimized by Intel Extensions for scikit-learn

B

(𝑥𝑖 − 𝑥𝑚𝑒𝑎𝑛)ଶ(𝑦𝑖 −
𝑦𝑚𝑒𝑎𝑛)ଶ

Correlation Distance = 1 -

x1 = 𝐴𝑥
x2 = 𝐵𝑥
y1 = 𝐴𝑦
y2 = 𝐵𝑦

xmean = 𝑚𝑒𝑎𝑛(𝐴𝑥, 𝐵𝑥)
ymean = 𝑚𝑒𝑎𝑛 𝐴𝑦, 𝐵𝑦

Correlation Distance

A

Optimized by Intel Extensions for scikit-learn

B

(𝑥𝑖 − 𝑥𝑚𝑒𝑎𝑛)ଶ(𝑦𝑖 −
𝑦𝑚𝑒𝑎𝑛)ଶ

Correlation Distance = 1 -

A = [5, 12]
B = [3, 4]

x1 = 5
x2 = 3
y1 = 12
y2 = 4

xmean = 𝑚𝑒𝑎𝑛 5, 3 = 4
ymean = 𝑚𝑒𝑎𝑛 12, 4 = 8

Correlation Distance

A

Optimized by Intel Extensions for scikit-learn

B

(𝑥𝑖 − 𝑥𝑚𝑒𝑎𝑛)ଶ(𝑦𝑖 −
𝑦𝑚𝑒𝑎𝑛)ଶ

A = [5, 12]
B = [3, 4]

x1 = 5
x2 = 3
y1 = 12
y2 = 4

xmean = 𝑚𝑒𝑎𝑛 5, 3 = 4
ymean = 𝑚𝑒𝑎𝑛 12, 4 = 8

(5 – 4)(12-8) + (3-4)(4-8)

2 2 2 2

(4) + (4)

Correlation Distance

A

Optimized by Intel Extensions for scikit-learn

B

(𝑥𝑖 − 𝑥𝑚𝑒𝑎𝑛)ଶ(𝑦𝑖 −
𝑦𝑚𝑒𝑎𝑛)ଶ

A = [5, 12]
B = [3, 4]

x1 = 5
x2 = 3
y1 = 12
y2 = 4

xmean = 𝑚𝑒𝑎𝑛 5, 3 = 4
ymean = 𝑚𝑒𝑎𝑛 12, 4 = 8

(4) + (4)

8
= 1

=

=

Correlation Distance

A

Optimized by Intel Extensions for scikit-learn

B

A = [5, 12]
B = [3, 4]

=
(𝑥𝑖 − 𝑥𝑚𝑒𝑎𝑛)ଶ(𝑦𝑖 −

𝑦𝑚𝑒𝑎𝑛)ଶ

Correlation Distance = 1 -

Correlation Distance = 1 – 1

Correlation Distance = 0

58Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Pairwise distance using @dppy.kernel
import dpctl
import numpy as np
import numba_dppy

@numba_dppy.kernel
def pairwise_python(X1, X2, D):

i = numba_dppy.get_global_id(0)

N = X2.shape[0]
O = X1.shape[1]
for j in range(N):

d = 0.0
for k in range(O):

tmp = X1[i, k] - X2[j, k]
d += tmp * tmp

D[i, j] = np.sqrt(d)

def pw_distance(X1, X2, D):
with dpctl.device_context("opencl:gpu"):

pairwise_python[X1.shape[0],numba_dppy.DEFAULT_L
OCAL_SIZE](X1, X2, D)

pairwise_python[X1.shape[0], 128](X1, X2, D)

Import dpctl

Pairwise distance in parallel using
the @ddpy.kernel decorator

Kernel invocation of the Pairwise
distance

Offload this to opencl:gpu

59Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Distance : The Syntax

from sklearnex import patch_sklearn
patch_sklearn() # apply BEFORE import of targets
#patch_sklearn('distances’) # to be surgical

from sklearn.metrics.pairwise import pairwise_distances

Import sklearnex

Apply “monkey patch”

Import desired sklearn
algorithms AFTER the
patch #Create an instance of the class

dist = pairwise_distances (X, y, metric="correlation")

or

dist = pairwise_distances (X, y, metric="cosine")

60Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Optimization Notice

Black Scholes using @njit
import dpctl
import numba as nb
from math import log, sqrt, exp, erf

blackscholes implemented as a parallel loop using numba.prange
@nb.njit(parallel=True, fastmath=True)
def black_scholes_kernel(nopt, price, strike, t, rate, vol, call, put):

mr = -rate
sig_sig_two = vol * vol * 2
for i in nb.prange(nopt):

P = price[i]
S = strike[i]
T = t[i]
a = log(P / S)
b = T * mr
z = T * sig_sig_two
c = 0.25 * z
y = 1.0 / sqrt(z)
w1 = (a - b + c) * y
w2 = (a - b - c) * y
d1 = 0.5 + 0.5 * erf(w1)
d2 = 0.5 + 0.5 * erf(w2)
Se = exp(b) * S
r = P * d1 - Se * d2
call[i] = r
put[i] = r - P + Se

def black_scholes(nopt, price, strike, t, rate, vol, call, put):
offload blackscholes computation to GPU (toggle level0 or opencl driv

er).
with dpctl.device_context("level_zero:gpu"):

black_scholes_kernel(nopt, price, strike, t, rate, vol, call, put)

Import dpctl

Black Scholes in parallel using the
@njit decorator

Calculate Calls and puts with the
change in the current price and
the strike price

Offload this to level_zero:gpu

61DPC++ Essentials

Hands-on Coding on Intel®
DevCloud / JLSE

62Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Summary
• Illustrate How oneAPI Can help solve the challenges of programming in a

heterogeneous world

• How to use Data Parallel Python and Data Parallel Control

• Performed 3 code walkthroughs via hands on activities demonstrating:

• A Pairwise Algorithm using Jit and Kernel decorators on CPU and GPU

• A Blackscholes Algorithm using Jit and Kernel decorators on CPU and GPU

62

63DPC++ Essentials

Thanks for attending the session

64Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any
optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors.
Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for
more information regarding the specific instruction sets covered by this notice.
Notice revision #20110804

Notices & Disclaimers
 This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your

Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

 The products and services described may contain defects or errors known as errata which may cause deviations from published specifications. Current characterized errata
are available on request. No product or component can be absolutely secure. Intel technologies’ features and benefits depend on system configuration and may require
enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer.

 Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and
MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to
vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products. For more complete information visit www.intel.com/benchmarks.

 INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS
GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

 Copyright ©, Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Core, VTune, and OpenVINO are trademarks of Intel Corporation or its subsidiaries in the U.S. and
other countries.

64

65

