

 1

Profiling with HPCToolkit

 Mark W. Krentel
Department of Computer Science

Rice University
krentel at rice.edu

http://hpctoolkit.org

ALCF Computational Performance Workshop May 24, 2022

mailto:krentel@rice.edu
mailto:krentel@rice.edu

HPCToolkit Basic Features
• Run application natively (optimized) and every 100-200 times

per second, interrupt program, unwind back to main(), record
call stack, and combine these into a calling context tree (CCT).

• Combine sampling data with a static analysis of the program
structure for loops and inline functions (hpcstruct).

• Present top-down, bottom-up and flat views of calling context
tree (CCT) and time-sequence trace view. Metrics are
displayed per source line in the context of their call path.

• Can sample on POSIX timers and Hardware Performance
Counters (Perfmon or PAPI events): cycles, flops, cache
misses, etc.

• Note: always include -g in compile flags (plus optimization) for
attribution to source lines.

2

HPCToolkit Advanced Features
• Finely-tuned unwinder to handle multi-lingual, optimized code,

no frame pointers, broken return pointers, stack trolling, etc.

• Derived metrics -- compute flops per cycle, or flops per
memory reads, etc. and attribute to lines in source code.

• Compute strong and weak scaling loss, for example:
 strong: 8 * (time at 8K cores) - (time at 1K cores)
 weak: (time at 8K cores and 8x size) - (time at 1K cores)

• Load imbalance -- display distribution and variance in metrics
across processes and threads.

• Blame shifting -- when thread is idle or waiting on a lock,
blame the working threads or holder of lock.

• Inline sequences — show full inline sequence for C++
templates.

3

New Features
• Spack — now build hpctoolkit and prereqs with spack and

install with spack modules.

• Simplified use case for hpcstruct and hpcprof.

• Kernel Blocktime — use Perf Events to count time spent
blocked inside kernel, eg, I/O, barriers, locks, etc. (requires
kernel perf events paranoid level 0 or 1).
— hpcrun -e CYCLES -e BLOCKTIME …

• GPU — full support for Nvidia and AMD, in progress for Intel.

• Support for OpenMP parallel regions — splice thread call
paths onto master thread and identify work and idle (requires
libomp replacement library), part of OpenMP 5.

4

Measure and attribute costs in context
 sample timer or hardware counter overflows
 gather calling context using stack unwinding

Call Path Profiling

5

Call path sample

instruction pointer

return address

return address

return address

Overhead proportional to sampling frequency...
...not call frequency

Calling context tree

Where to find HPCToolkit
• Home site: user’s manual, build instructions, links to source

code, download viewers.
 http://hpctoolkit.org/

• On theta, available as module hpctoolkit (includes hpcviewer
on theta login nodes).
 module load hpctoolkit/2022.05.15 (theta)
 module load hpctoolkit/2022.05.15-gpu (theta-gpu)
See: /soft/perftools/hpctoolkit/workshop-2022 for build/run notes,
example databases, etc.

• Source code on GitHub
 https://github.com/hpctoolkit
 git clone https://github.com/hpctoolkit/hpctoolkit
 spack build instructions: README.Install

• Send questions to:
 hpctoolkit-forum at mailman.rice.edu

6

http://github.com/hpctoolkit
https://github.com/hpctoolkit/hpctoolkit
http://mailman.rice.edu
http://github.com/hpctoolkit
https://github.com/hpctoolkit/hpctoolkit
http://mailman.rice.edu

Quickstart for theta-gpu
• On theta-gpu,

— module load hpctoolkit/2022.05.15-gpu

• Run application as follows. The first example is low-
overhead. The ‘pc’ option displays the internals of the gpu
kernels but can cause high overhead (1.5x to 4x).
— hpcrun [-t] -e REALTIME -e gpu=nvidia app …
— hpcrun [-t] -e REALTIME -e gpu=nvidia,pc app …

• Post-run analysis.
— hpcstruct hpctoolkit-measurements-directory
— hpcprof hpctoolkit-measurements-directory

• Finally, run hpcviewer and select database directory in the File
menu chooser.

7

Using OpenMP Tools Library
• Use hpctoolkit ompt module.

 module load hpctoolkit/2020.04.ompt

• Compile with -fopenmp, but on hpclink link line, replace
-fopenmp with libomp.a from LLVM runtime. Supports
GNU, Intel and Clang. On theta,

 /projects/Tools/hpctoolkit/pkgs-theta/llvm-openmp/lib/
 libomp.a

• Add event OMP_IDLE (no number) plus time-based event:
REALTIME, PAPI_TOT_CYC or CYCLES.

• Workarounds on theta to turn off thread affinity.
 aprun —cc none …
 export KMP_AFFINITY=none

8

9

Trace of hpcstruct analyzing 8 Gig .so file.

10Code inside GPU kernel in quicksilver proxy app.

HPCToolkit Capabilities at a Glance

Attribute Costs to Code

Analyze Behavior
over Time

Assess Imbalance
and Variability

Associate Costs with DataShift Blame from
Symptoms to Causes

Pinpoint & Quantify
Scaling Bottlenecks

hpctoolkit.org

http://hpctoolkit.org
http://hpctoolkit.org

• Profiling compresses out the temporal dimension
—temporal patterns, e.g. serialization, are invisible in profiles

• What can we do? Trace call path samples
—sketch:

– N times per second, take a call path sample of each thread
– organize the samples for each thread along a time line
– view how the execution evolves left to right
– what do we view?
 assign each procedure a color; view a depth slice of an execution

12

Understanding Temporal Behavior

Time

Processes

Call
stack

AMG2006: 8PE x 8 OMP Threads

13

OpenMP loop in hypre_BoomerAMGRelax using
static scheduling has load imbalance; threads
idle for a significant fraction of their time

Code-centric view: hypre_BoomerAMGRelax

14

Note: The highlighted OpenMP loop in
hypre_BoomerAMGRelax accounts for
only 4.6% of the execution time for this

benchmark run. In real runs, solves
using this loop are a dominant cost

across all instances of this OpenMP
loop in hypre_BoomerAMGRelax

19.7% of time in this loop is spent
idle idle w.r.t. total effort in this loop

Serial Code in AMG2006 8 PE, 8 Threads

15

7 worker threads are idle
in each process while its
main MPI thread is
working

200K

400K600K

16

Pinpointing and Quantifying Scalability Bottlenecks

=−

P Q

P ×

coefficients for analysis
of strong scaling

 Q ×

