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Aurora – Argonne’s Exascale Supercomputer

§ 2 exaFLOPS double precision
§ > 10,000 nodes
§ HPE Slingshot 11 network, dragonfly
§ > 10 PB memory
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Aurora node
§ 2X Intel® Xeon® CPU Max Series
§ 6X Intel® Data Center GPU Max Series
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Aurora I/O System
§ Distributed Asynchronous Object Storage (DAOS)
§ ≥ 230 PB, ≥ 25 TB/s



Status of Aurora
§ Aurora is built with exception of compute blades
§ Installation of compute blades well underway
§ Targeting early-user system access in Q3
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Exascale Science

§ Exascale CFD simulation data trains NN model for rapid design studies
§ Exascale cosmology simulation data, sky survey data, and ML inform observations and test theory
§ Exascale training from tokamak experimental data for inference at experiment
§ Exascale inference from DNN to construct connectome from massive EM brain tissue dataset
§ Exascale search spaces: PV materials, chemical kinetics, cancer drug combinations, detector collision events 4

Simulation Data Learning

 
Figure 1:  Data flow and summary of the FRNN algorithm 
 
Missing a real disruption (false negative) can be costly because of the damaging effects of a disruption, while triggering a false 
positive alarm wastes valuable experimental time and resources.  Setting the threshold allows a tradeoff between these two 



Exascale Applications/Software Readiness

§ ALCF Aurora Early Science Program (ESP)
§ Managers: Tim Williams, Venkat Vishwanath
§ 9 Simulation,10 Data and Learning projects
§ Every project will run a proposed science 

campaign on Aurora
§ Training: Workshops, Hackathons, Dungeon 

Sessions, webinars
§ Argonne postdoc and staff support (Catalysts)

5

§ DOE Exascale Computing Project (ECP)
§ 3 technical areas: Application Development, 

Software Technology, Hardware and Integration
– AD: 21 applications projects preparing 

codes for exascale
– ST: 66 unique software products
– HI: Applications Integration: deploy apps on 

specific exascale systems (Aurora, 
Frontier)

§ AppInt funding for Argonne staff for Aurora:
– ALCF working with 15 ECP AD so far

Argonne-Intel Center of Excellence – dedicated Intel staff
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a proof-of-concept, RMG-Cat successfully discovered the major kinetic pathways for 
CH4 oxidation on nickel; in less than 5 minutes on a single core, RMG-Cat was able to 
find all the same reactions as a microkinetic mechanism developed over several years by 
a team of experts. RMG-cat can use a single node effectively. An entire RMG-Cat run 
can take between a few seconds to a few hours on a personal laptop, but for the purposes 
of this application we only need to know which thermodynamic and kinetic parameters 
are absent or poorly estimated. This node-bound preprocessing step only takes a few 
seconds to evaluate. Once these parameters have been calculated through the workflow 
RMG-Cat can be run entirely as a post-processing step, and if necessary this process can 
be iterated upon until all relevant species are calculated. For each species, and all related 
reactions between those species that RMG-cat does not have information for, we will 
launch an instance of our search suite (KinBot, GAlgo, LRT) in parallel. 

Once the area to search is defined KinBot and GAlgo will use learning techniques such as 
genetic algorithms to efficiently explore the PES. These efficient searches will require 
hundreds of thousands (106) of individual energy evaluations and will simultaneously 
learn a low rank tensor (LRT) approximation of the PES that will be used to expedite the 
search and to calculate the kinetic and thermochemical parameters.  
Each of these searches will be carried out in the following manner, as shown in figure 1. 
At each step, GAlgo proposes a configuration to evaluate an objective function that 
measures the proximity of that particular configuration to a critical point of interest (e.g. 
saddle point or a local minimum). The configuration is represented by RxN matrix, where 
R is the number of configurations, and N is the dimensionality (e.g. for normal 
coordinates N=3a-6 where a is the number of nuclei), while the objective function 
requires KinBot to evaluate the PES from a computational chemistry application such as 
NWChem, as well as gradients with respect to each dimension, leading to a matrix of size 
Rx(N+1). GAlgo then uses the objective function value to propose a new configuration as 
it proceeds with the search of saddle points. KinBot generates input and parses output 
from simulations to feed these energies and gradients into LRT. LRT will need the 
aggregated number of PES evaluations input/output pairs, as MxN and Mx1 matrices, 
respectively, where M is the total, aggregated number of PES evaluations. The 
constructed LRT approximation (stored as a coefficient tensor) will be invoked instead of 
the PES evaluation if GAlgo's imposed accuracy tolerance is met. Our current estimates 
for the above dimensionalities are: N~100, M~106, and R~104.  

 
Figure 1: Application workflow 
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but not for the typical BSP-based supercomputing application. This model is very suited for the
A21 architecture (details cannot be discussed here due to RSNDA restrictions).

As a specific example from this project we consider the construction of synthetic galaxy
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Figure 1. Workflow for synthetic galaxy catalog
construction showing science products (courtesy
LSST DESC Cosmological Simulations working
group).

catalogs; these have become the centerpiece of the
industry standard practice for validating cosmolog-
ical inference pipelines. While the use-cases of
such galaxy catalogs are highly varied, the princi-
pal idea behind their use is straightforward: the ex-
istence of a realistic mock universe generated from
a known underlying model allows scientists to val-
idate the analysis pipelines they intend to run on
the actual astronomical dataset.

Figure 1 shows an end-to-end diagram of
the workflow for producing a synthetic sky from
raw simulation outputs, which requires an entire
ecosystem of scientific codes rather than a single
application. Beginning from (Level 1) direct simu-
lation outputs, this ecosystem:

1. Creates Level 2 science datasets such as cat-
alogs of dark matter halos, as well as time-
series data such as trees of merger histories
of each halo;

2. Creates Level 3 mock galaxy catalogs by
training and applying nonlinear mappings
from the halos to synthetic galaxies that re-
side in the halos.

It is important to note that except for the open-source semi-analytic galaxy formation code Galacti-
cus [16] (which for many tasks is already being replaced by an Argonne-based methodology), all
the functional blocks in Figure 1 exist, were written by the Argonne team, and are already running
as a parallel workflow application on Cetus, Cooley, and the Phoenix cluster (the last-named is
a CELS/HEP data-intensive computing pathfinder project). Indeed, this science pipeline has now
reached production-level maturity: our group is currently deploying it to generate the flagship syn-
thetic catalogs for LSST DESC’s Data Challenge 2. At the time of this writing, a growing list of
more than twenty distinct analyses have been proposed by LSST DESC members who will use
these catalogs as a foundational component of the methodology in their proposed publications.

For our Aurora application, we propose to scale up our science pipeline to generate large suites
of high-accuracy synthetic skies, making the data products publicly available for analysis by the
wider cosmological community. The production phase of this proposal will be preceded by a train-
ing phase, in which we fine-tune our hierarchical model with targeted application of machine learn-
ing algorithms. As described below in Section 2.5.4, we will use generative deep learning models
trained on high-resolution simulations to produce synthetic halo- and star-formation histories. We
will accelerate evaluation of our forward modeled summary statistics with Gaussian Process mod-
eling, applying Variational Autoencoder techniques for dimensional reduction. Because our goal
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Data/Learning for Exascale CFD K. E. Jansen

Figure 2: Isosurface of instantaneous Q criterion colored by speed over a vertical tail at Re = 3.5 105,
with a rudder deflection angle of 30 degrees and 12 unsteady jets active. This DES simulation
shows our method’s ability to refine the grid to capture the unsteady structures resulting from the
separation near the rudder and from the interaction between the unsteady jets and the crossflow.

(a) CFD - First adapted mesh. (b) CFD - Second adapted mesh. (c) Experiments.

Figure 3: Phase-averaged isosurface of velocity (color) and vorticity (grey) revealing coherent struc-
tures in the wake of a synthetic jet located at the junction between the stabilizer and the deflected
rudder of a vertical tail. Comparison between CFD predictions on two successive adapted meshes
and experimental results (c).
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Figure 1: Workflow of the proposed simulations 

2e. Application Summary  
The proposed simulations embody a complex 
workflow, which integrates several codes and 
algorithms, as illustrated in Figure 1. Data will be 
generated by the electronic structure layer, comprising 
the Quantum Espresso9-10 code for generating low-cost, 
low-fidelity DFT data and the BerkeleyGW code for 
generating high-cost, high-fidelity MBPT data. Data 
from quantum mechanical simulations will flow into 
two layers of machine learning, a discovery layer and a 
decision layer. The discovery layer includes feature 
selection, using the SISSO code, to identify low-cost 
features that correlate strongly with high-cost excited 
state properties, as well as algorithms such as subgroup 
discovery11-12 to reveal patterns in data. The discovery layer will further promote deeper understanding of 
the underlying physics. Information from the discovery layer will feed into the decision layer, in which 
Bayesian optimization algorithms will decide which data points to sample next and at what level of 
fidelity. Decisions will be translated to queries of the CSD database, a large repository of unlabeled data, 
and coordinates of structures pulled out of CSD will be fed back into the electronic structure layer to 
acquire labels. This process will repeat iteratively in order to refine our models. Structures identified as 
promising candidates at any point will be further evaluated using high-fidelity GW+BSE calculations to 
accurately predict their electronic and optical properties. Due to the high computational cost of MBPT 
calculations of large periodic systems with several hundred atoms, we expect most of the computer time 
requested to be spent on BerkeleyGW calculations. The computational cost of DFT and ML calculations 
is negligible in comparison. Therefore, the proposed development plan is focused primarily on the 
BerkeleyGW code. Additional goals are scalability improvements of SISSO and development of Python 
workflow management tools to integrate and automate the whole workflow.  

2e.i. Application Software Requirements 

Quantum ESPRESSO: 
Language: FORTRAN-90 
Libraries: ScaLAPACK, ELPA, LAPACK, BLAS, FFTW 
Parallelism: MPI, OpenMP 
Past DOE Readiness Programs: NESAP for Cori 

BerkeleyGW: 
Language: FORTRAN 2008 
Libraries: ScaLAPACK, ELPA, LAPACK, BLAS, FFTW 
IO Libraries: Parallel HDF5 
Past DOE Readines Programs: NESAP For Cori 

SISSO: 
Language: FORTRAN 
Libraries: BLAS, LAPACK 
Parallelism: MPI 
Past DOE Readines Programs: optimization on Theta is underway within INCITE project 

Multi-fidelity Bayesian Optimization:  
Language: Python 
Libraries: cuDNN, CUDA, Tensorflow, Pytorch 
Parallelism: CUDA on GPUs 

 
Figure 1:  Data flow and summary of the FRNN algorithm 
 
Missing a real disruption (false negative) can be costly because of the damaging effects of a disruption, while triggering a false 
positive alarm wastes valuable experimental time and resources.  Setting the threshold allows a tradeoff between these two 

http://esp.alcf.anl.gov

http://esp.alcf.anl.gov/


Tracking Aurora Applications Development
§ Steps in application preparation

– Implementation of science and algorithms
– Porting to Aurora programming models
– Testing with Aurora SDK on Aurora testbeds
– Tuning for performance on Aurora testbeds
– Scaling across the Aurora system
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§ ALCF and Intel working with over 40 
projects to ready codes for Aurora

§ Effort from over 60 Argonne & Intel 
people and numerous outside teams

Application Science Implementation Port to Aurora Programming Models
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2022 Q4 Aurora Applications Status
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Application Q4

HACC
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XGC

QMCPack
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Application Q4
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Porting in Progress



Exascale Programming
§ We’ve been developing for future target exascale architectures for years

– GPU acceleration

§ Performance portability across Intel, AMD, NVIDIA
– Pick a portability layer (Kokkos, SYCL, OpenMP 5, your own library, TensorFlow, PyTorch)
– Work with implementers of layer on target systems

§ Lingua Franca
– Simulation – compiled languages; math libraries; SYCL, CUDA, HIP, (Kokkos, Raja)
– Data & Learning – Python frameworks
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§ Aurora Programming
– Simulation

• oneAPI, oneMKL
• ECP E4S

– Data & Learning
• Frameworks backed by oneDAL, oneCCL
• DAOS

§ Aurora Development Hardware
– In the beginning, Xeon integrated graphics
– Sequence of pre-production Intel discrete 

GPUs
– Sunspot

• 128 nodes of Aurora hardware

https://e4s-project.github.io/
https://e4s-project.github.io/


XGC Early Science Project  (Simulation; PI: CS Chang)
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Divertor

Tungsten

§ Hot exhaust such as He particles 
hits the divertor

§ Knocks out Tungsten atoms 
(sputtering)

§ Some are ionized and re-enter 
the fusion plasma

§ Interacts, impacts turbulence and 
other plasma behaviors

§ Will it negatively impact 
confinement or energy 
production?

§ Early Science campaign: 
Predict ITER plasma behavior 
with Tungsten impurity ions

ITER Tokamak



XGC Early Science Project
§ XGC gyrokinetic PIC (Particle-in-Cell) fusion plasma physics simulation on unstructured grid

– Multi-ion-species
§ Aurora implementation: Kokkos library with SYCL execution space

– Portable across {Intel, AMD, NVIDIA} GPUs
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Field 
solve

Electron push
(x60)

Ion push

Charge 
scatter

Transfer particle 
data between 

compute nodes

Collisions
Sources

Diagnostics

Single GPU Performance FOM
§ SimpleFOM = 

1/(loop_time/(#particles × #timesteps))
§ 2 MPI ranks
§ XGC1 small test case
§ 80 million particles

GPU SimpleFOM
NVIDIA A100 (Polaris) 1.4×106

Intel® Data Center GPU Max 
Series (Sunspot) 2.2×106

Argonne POCs: T. Williams, A. Scheinberg
Intel POC: R. Bustamante



Cancer Metastasis Early Science Project (Data: PI: Amanda Randles)
§ ESP GOAL:  Investigate circulating tumor cells in 

human vasculatory system
– 3D Lattice Boltzmann CFD
– FEM for cells, deformation
– Immersed boundary method to couple

§ In situ exascale data visualization & analysis
§ Aurora implementation: bake-off between

– SYCL (oneAPI DPC++)
– Kokkos with SYCL backend

§ HARVEY application translated with Syclomatic, runs 
on Intel discrete GPUs

§ MiniApp LBM shows Kokkos-SYCL competitive with 
handcoded SYCL
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(1). Flow inside a 
human aorta.
Ames, Jeff, et al. 
"Low-overhead in situ 
visualization using 
halo replay." 2019 
IEEE 9th Symposium 
on Large Data 
Analysis and 
Visualization (LDAV). 
IEEE, 2019.

Argonne POCs: J. Insley, S. Rizzi, V. Mateevitsi,
G. Liu, S. Patel

Intel POC: V. Madanath



§ Python and Productivity Languages
§ Numba, NumPy,  etc.
§ JAX and Julia

§ Deep Learning Frameworks:
§ PyTorch, TensorFlow, Horovod, DDP, 

Deepspeed

§ Machine Learning
§ OneDAL, scikit-learn, XGBoost, etc.

§ Optimized and scalable communication 
using OneCCL

§ Spark BigData Analytics stack
§ Profiling and debugging tools

Data Science and Learning on Aurora

https://software.intel.com/content/www/us/en/develop/tools/o
neapi/ai-analytics-toolkit.html

Aurora will provide for a familiar, productive and performant HPC and AI 
software stack Intel AI Analytics Toolkit

https://software.intel.com/content/www/us/en/develop/tools/oneapi/ai-analytics-toolkit.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/ai-analytics-toolkit.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/ai-analytics-toolkit.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/ai-analytics-toolkit.html


Argonne Leadership Computing Facility13

Distributed Asynchronous Object Store (DAOS) 

qPrimary storage system for Aurora
qOffers high performance in bandwidth and IO 

operations
q 230 PB capacity
q ≥ 25 TB/s

qProvides a flexible storage API that enables new 
I/O paradigms

qProvides compatibility with existing I/O models 
such as POSIX, MPI-IO and HDF5

qOpen-source storage solution



Argonne Leadership Computing Facility14

AURORA ESP Data and Learning Projects and Methods 
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Classification

Regression

Reinforment learning

Clustering

Uncertainty Quantification

Dimensionality Reduction

Reduced  / Surrogate Models

Advanced Statistics

Image and Signal Processing

Graph Analytics

Databases

Advanced Workflows

In Situ Viz & Analysis

Virtual Drug Response Prediction

Enabling Connectomics at Exascale to
Facilitate Discoveries in Neuroscience

Machine Learning for Lattice Quantum
Chromodynamics

Accelerated Deep Learning Discovery in
Fusion Energy Science

Many-Body Perturbation Theory Meets
Machine Learning

Exascale Computational Catalysis

Dark Sky Mining

Data Analytics and Machine Learning for
Exascale CFD

In Situ Visualization and Analysis of Fluid-
Structure-Interaction Simulations

Simulating and Learning in the ATLAS detector
at the Exascale



CONNECTOMICS DATA-DRIVEN MODELS

~1cm^3

sample

~1mm^3

section

section

section

section

section

section

25000 
40nm sections
1mm x 1mm

(6nm resolution)

Each section
imaged with EM as

N tiles (8 bit)

Sections
stitched
together

How much image data is 1mm^3 ?  1e15 voxels -> ~1 PB 

Mouse brain: 70M neurons

Data from Gregg Wildenberg, Kasthuri Lab, UChicago

80K x 40K pixels



DATA CHALLENGES IN CONNECTOMICS

~1cm^3
How much image data 
is 1cm^3 ? ~1EB

~1000cm^3
How much image data is 
1000cm^3 ?  ~1000 EB

(6nm x 6nm x 40nm) 

Reconstructed data 
will be much larger:

- Segmentation labels 
for each voxel (4x 
voxel data)

- 3D Mesh
- Skeleton

Mouse brain: 70M neurons Human brain: 80B neurons

tiny brain

The structures are expected to be 
used to seed simulations to study 
flow in neuro transmitters, in better 
modeling the brain, brain-inspired 
computing, among others.

Courtesy: Nicola Ferrier, Tom Uram, Bobby Kasthuri (Argonne & UChicago)



CONNECTOMICS PROCESSING
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Data from Gregg Wildenberg, Kasthuri Lab, UChicago



RECONSTRUCTING THE BRAIN CONNECTIVITY

Kasthuri et al, Cell 2015



LARGE-SCALE RECONSTRUCTION
▪ Inference (and training) has scaled on CPU-based and GPU-based 

supercomputers (parallel granularity: overlapping subvolumes)
–Achieved million-way concurrency on Theta supercomputer

▪ Image stitching and alignment components are being scaled as well to 
ensure a scalable end-to-end pipeline

Dong, et al, “Scaling Distributed Training of Flood-Filling Networks on HPC Infrastructure for Brain Mapping”, 2019 
IEEE/ACM Third Workshop on Deep Learning on Supercomputers (DLS) at SC19

Vescovi, et al, “Toward an Automated HPC Pipeline for Processing Large Scale Electron Microscopy Data”, 2020 
IEEE/ACM 2nd Annual Workshop on Extreme-scale Experiment-in-the-Loop Computing (XLOOP) at SC19

Exascale Inference Problem:
▪ On a single GPU (A100), we achieve ~80 MegaVoxels/hour using 32-bit 

(There is still room for improvement here)
▪ In reduced precision (8-16 bits),  we expect ~1 GigaVoxel/hour per GPU
▪ 1 PetaVoxel (1mm3) will take ~1M GPU node hours
▪ Approximately, 24 hours on a system with 50K GPUs (considering 

overlapping subvolumes)
▪ For a mouse brain (1cm3), 1 ExaVoxel, we would need ~3 years on an 

exascale system
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• Progress on Sycl-direct nekRS benchmarks, fusing the nested loops
• the kernel version of best performance

Full-core configuration on the left rod bundle on 

Full-core configuration on the left and a single 17x17 rod bundle on the right.

NekRS is an open-source Navier-Stokes solver based on the spectral element method targeting 
classical processors and accelerators like GPUs. Developed in 2019, the code uses high-performance 
kernels from libParanumal. For API portable programming OCCA is used.

Intel® Data Center GPU Max Series 
with Intel oneAPI DPC++ implementation

ExaSMR: NekRS Performance on Intel® Data Center GPU Max Series
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OpenMC performance
https://docs.openmc.org

§ Monte Carlo particle transport code for exascale computations

§ Intel® Data Center GPU Max Series sustains 999k particles/second using 
OpenMP Target offload

§ >2x performance gain over A100

§ Exascale Compute Project Annual Meeting 2022 presentation:

§ https://www.alcf.anl.gov/events/2022-ecp-annual-meeting

§ International Conference on Physics of Reactors 2022 presentation:

§ https://www.ans.org/meetings/physor2022/session/view-976/

Application Summary: OpenMC is a Monte Carlo particle transport application that has recently been
ported to the OpenMP target offloading programming model for use on GPU-based systems. The Monte
Carlo method employed by OpenMC is considered the "gold standard" for high-fidelity simulation while
also having the advantage of being a general-purpose method able to simulate nearly any geometry or
material without the need for domain-specific assumptions. However, despite the extreme advantages in
ease of use and accuracy, Monte Carlo methods like those in OpenMC often suffer from a very high
computational cost. The extreme performance gains OpenMC has achieved on GPUs, as compared to
traditional CPU architectures, is finally bringing within reach a much larger class of problems that
historically were deemed too expensive to simulate using Monte Carlo methods. The leap in
performance that GPUs are now offering carries with it the potential to disrupt a number of engineering
technology stacks that have traditionally been dominated by non-general deterministic methods. For
instance, faster MC applications may greatly expand the design space and simplify the regulation process
for new nuclear reactor designs -- potentially improving the economics of nuclear energy and therefore
helping to solve the world's climate crisis.

Relative OpenMC Depleted Fuel Inactive Batch Performance on HM-Large 
Reactor (Higher is better)
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ExaSky: CRK-HACC Performance 
on Intel® Data Center GPU Max Series

• Original CUDA kernels 
translated to SYCL using 
SYCLomatic, with the five 
most compute-intensive 
kernels hand-optimized by 
Intel performance engineers. 

• Implemented optimizations 
included loop restructuring to 
take advantage of SYCL 
subgroup broadcast 
performance.

CRK-HACC FOM for SYCL on Intel® Data Center Max Series 
relative to CUDA on NVIDIA A100

• ExaSky project seeks to verify convergence 
between grid and particle methods for simulating 
gravity and hydrodynamics to resolve cosmological 
structure formation on exascale systems. 

• CRK-HACC employs n-body methods for gravity 
and a novel formulation of Smoothed Particle 
Hydrodynamics.

• SYCL on Intel® Data Center GPU Max Series.
• CUDA on NVIDIA A100 GPUs.

Figure-of-Merit (FOM) measures throughput of force calculations for 33 million 
particles on the GPU, including time required for data transfer between host 
and device. Observed relative performance between Intel® Data Center GPU 
Max Series and NVIDIA A100 is strongly correlated with the expected single 
precision floating point throughput for each architecture.
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QMCPACK: Performance
§ QMCPACK, is a high-performance open-source Quantum Monte Carlo 

(QMC) simulation code. Its main applications are in computing the 
quantum mechanical properties of materials with benchmark accuracy, 
including for energy storage and quantum materials.

§ QMCPACK uses C++ and OpenMP target offload, plus wrappers around 
vendor optimized linear algebra.

§ Benchmark configuration:
– Running `dmc-a512-e6144-DU64` problem. This simulates a 

supercell of nickel oxide with 6144 electrons and 512 NiO atoms 
total.

– PVC: 2 MPI ranks, with one MPI rank, 8 Walkers,  64 GB of HBM 
per Tile. Using Intel(R) oneAPI DPC++/C++ Compiler 2022.1.0

– A100 (40GB): 1 MPI Rank, 7 Walkers. LLVM15 compiler.
– The Figure Of Merit (FOM) measure is throughput (walker 

moves/second). Higher is better.

0.1

0.15

FOM (walkers/second)

QMCPACK Throughput
A100 PVC

Argonne POCs: A. Benali, Y. Luo, T. Applencourt
Intel POC: Y. Kim
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WDMApp: XGC Performance

• Science case: Predict ITER plasma behavior 
with Tungsten impurity ions sputtered from 
the divertor

• Gyrokinetic particle-in-cell simulation of 
tokamak plasma
⏤Kokkos/SYCL on Intel GPUs
⏤Kokkos/CUDA on NVIDIA A100 GPUs.

ESP Project PI: CS Chang
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XGC FOM
XGC1 small test case

80M particles, 2 MPI ranks

Sunspot (Intel® Data Center Max GPU)
Polaris (NVIDIA A100 GPU)



www.anl.gov

THANK YOU
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