
Profiling Deep Learning
with Nsight Systems

Daniel Horowitz
Director of Engineering
Platform Developer Tools

Agenda

● Monitors vs Profilers
● Profiling on a single node

○ Overview
○ Basic features
○ GPU investigations
○ CPU investigations & features
○ Common bubble recovery tactics

● Profiling multi-node

2

Monitors vs Profilers
● Differ in the target users & intent = tradeoffs in design

○ Pick the right tool for the job!!!
○ Don’t expect one to be fully usable as the other
○ Gray area, hybrid amalgamations, but usually still tradeoffs

● Monitors
○ Goal: Coarsely observe quality, utilization, progress
○ Users: Machine and cluster admins, users of taskman, top, netstats, etc
○ Reports at a low rate (~10 - 1 hz)

■ Sensible to observer reacting, low overhead, smooth out numbers
■ Does not correlate back to code

○ Track issues back to jobs
■ Maybe minutes or seconds but often not root cause

○ Ex: DCGM
● Profilers

○ Goal: Aid program optimization
○ Users: Engineers looking to relating back to areas of code
○ Many different breeds of profiler!!!

■ Levels of observibility
■ Overhead trade-offs

○ Often not designed for 100% up-time and continual reporting like a
monitor

○ Ex: Nsight Systems and Nsight Compute 3

DCGM

Nsight Systems

Nsight Compute

High
Server

Low
Instructions

Level

4 Iterate until desired performance is achieved

Profile

Analyze

Optimize

Profiler-Driven Optimization Workflow

5

Nsight Profiler Family

Nsight Systems -
Analyze application
algorithm system-wide
CPU,GPU,CUDA,Graphics

Nsight Compute -
Debug/Optimize
CUDA kernels

Nsight Graphics -
Debug/Optimize
Graphics shaders & frames

Performance Analysis Workflow

6

Nsight Systems

7

Timeline looks like a spectrogram when zoomed out
Ex: DL model training, 2 iterations, GPU & CPU

8 Zooming in transforms many row graphs into ranges

9

Tuning an Orchestra of Tasks

10

Why start with Nsight Systems?

See the big picture

See how asynchronous CPUs, GPUs, NICs, and software are interacting

Who is stuck on whom

Measure the higher-level costs to pick the best opportunities

Avoid work based on intuition & false-positive indicators

Don’t assume GPU bound and skip ahead to other tools

Some synchronization oriented issues can look like GPU bound

Statistics alone often aren’t enough info to understand and resolve the issue

WARNING: The presenter & slides will often refer to “Nsight Systems” as Nsys or NSYS

It’s designed to allow you to…

11

• System-wide application algorithm tuning

• Locate optimization opportunities
• Visualize millions of events on a very fast GUI timeline

• See gaps of unused CPU and GPU time

• Balance your workload across multiple GPUs, CPUs, NICs
• GPU streams, kernels, memory transfers, etc

• CPU algorithms, utilization, and thread state

• UX: CLI, GUI timeline, statistics, data export

• Ex: Collect nsys-rep w/CLI on cluster, SCP to PC to view, mine either place

• Multi-platform: Linux & Windows, x86-64, ARM server, Tegra
• Mac (host-only)

Overview

12

• GPU

• GPU HW metrics sampling

• CUDA GPU-side kernel and mem-op ranges correlated to CPU API calls

• Libraries: cuBLAS, cuDNN, cuDF, TensorRT

• CPU, OS, & application
• Thread state, migrations, and call-stacks

• OS runtime long call trace (>1us, pthread, glibc → mmap, file & IO, ...)

• Call-stack backtraces (>80us)

• ftrace or WDDM & ETW (page faults, signal, interrupts, …)

• Code Annotations APIs
• NVTX

• Networking
• UCX, MPI (OpenMPI & MPICH), OpenSHMEM, NVSHMEM, NCCL trace

• NVIDIA NIC/HCA metrics sampling (Infiniband & Ethernet)

•
•
•

Timeline Features

13

Wait!!! I just want stats about my DNN ☹
Each DL framework has its own tools, so we’ll discuss how to go deeper

Many DL frameworks have their DNN layer execution instrumented with NVTX

Sometimes just the NVIDIA container if the framework doesn’t accept it upstream

Nsys has the relationships: DNN layer → CUDA Launch → GPU CUDA Kernel Execution

Nsys can export to SQLite

Nsys has python scripts & documentation on how to analyze that database

If that’s all you want, that’s the easy path

But we’re about to go deeper and show you how it’s executing!!!

So you can visually investigate, craft better stats, and create your own expert systems

You have barely mentioned Deep Learning!!!

14

Processes &
threads

CUDA API trace

CPU call-stack
samples

GPU CUDA
Kernel & memory
transfer activities

Thread state

Thread CPU core

NVTX annotations

OpenGL trace

Thread activity

15

API launch to GPU kernel correlation

CUDA

Correlation Highlights in ruler Hidden to right

Hidden below

Hidden in
sub-row

Row has
highlights

CPU-GPU correlation & location assistance

17

Code annotations APIs
NVTX = NVIDIA Tools eXtensions

Example: Visual Molecular Dynamics (VMD) algorithms visualized with NVTX on CPU

18

NVTX ranges project from CPU onto the GPU CUDA streams

Example: Visual Molecular Dynamics (VMD) algorithms visualized with NVTX on GPU

PyTorch

DNN layer annotations are disabled by default

Add the following: “with torch.autograd.profiler.emit_nvtx():”

TensorRT is also annotated already if that is the backend you are using

You can also add NVTX to your python script manually:

https://github.com/pytorch/pytorch/blob/master/torch/cuda/nvtx.py

https://pytorch.org/docs/stable/generated/torch.cuda.nvtx.range_push.html

https://pytorch.org/docs/stable/generated/torch.cuda.nvtx.range_pop.html

https://github.com/pytorch/pytorch/blob/master/torch/cuda/nvtx.py
https://pytorch.org/docs/stable/generated/torch.cuda.nvtx.range_push.html
https://pytorch.org/docs/stable/generated/torch.cuda.nvtx.range_pop.html

TensorFlow

DNN layers are annotated by default with NVTX in NVIDIA TF containers!

https://catalog.ngc.nvidia.com/orgs/nvidia/containers/tensorflow

https://github.com/NVIDIA/tensorflow

TF_DISABLE_NVTX_RANGES=1 if you want to disable for production

Adding more detail to the timeline for setup,eager mode, tf.data.Dataset.from_generator, etc

https://github.com/NVIDIA/NVTX/tree/dev/python

https://catalog.ngc.nvidia.com/orgs/nvidia/containers/tensorflow
https://github.com/NVIDIA/tensorflow
https://github.com/NVIDIA/NVTX/tree/dev/python

21

Nsight Systems CLI command line example

nsys profile --trace=cuda,nvtx,osrt,cudnn,cublas --backtrace=dwarf
--capture-range=cudaProfilerApi --gpu-metrics-devices=all --output=oft-profile-dwarf4
sh scripts/expt-singleGPU.sh --profile 50 --profile_start 5000 --profile_epoch 1

Nsight Systems CLI command
Select APIs to trace
Enable GPU memory use tracking (but there is extra overhead)
Collect thread call-stack sample backtraces via DWARF info - deeper but more expensive to collect
Trigger collection on cudaProfilerStart API in application, or consider timer-based options
GPU metrics sampling at default 10khz
Name the report file
Application command - plus arguments for when to start profiling

https://docs.nvidia.com/nsight-systems/UserGuide/index.html#cli-profile-command-switch-options

srun nsys profile … required on multi-node or multi-container
nsys profile mpirun … optional on single node to produce a single report

https://docs.nvidia.com/nsight-systems/UserGuide/index.html#cli-profile-command-switch-options

22

PyTorch Transformer
with NVTX ranges projected onto the GPU

23

PyTorch Transformer
with NVTX ranges projected onto the GPU

24

Example: NVTX on GPU in PyTorch transformer model in eager mode (ie non-hybrid)

25

TensorFlow Resnet50 DNN nodes
as NVTX ranges projected onto the GPU

26
NVSHMEM & NCCL

27

NVIDIA DALI trace
Data Loading Library

Core Investigation Strategy

● What’s HOT?
○ Will it be easier to shrink what i have?
○ This is where MOST people concentrate. …intuitive but not always better

● What’s COLD?
○ Will it be easier to take advantage of the something unused?
○ Free money? Yes please!

● Is it doing what I intended & budgets? (hint: often not as well as you thought)
● Cold spots are often clear, measurable opportunities!!!

○ How can i remove or fill them?
○ Where do i have incorrect/unnecessary/unexpected dependencies/synchronization?

● Hot spots
○ Might be parallelizable?
○ Might not be shrinkable without compromising accuracy, memory, etc

28

● Find the crime (cold or cool spot)
● Use correlation to track back to the CPU

○ Select surrounding GPU CUDA ops
● Investigate what was in the gap

○ Thread call-stack backtrace samples
○ OS Runtime long function backtraces
○ API & library traces
○ User-coded annotations

GPU Bubble Detective

29

30

CUDA trace based GPU idle and low utilization level of detail
Investigate by select kernels around bubble to find related CPU range

31

Zooming in reveals gaps where there were valleys

CUDA streams eventually convert from graphs to ranges

CUDA GPU utilization graph is based on percentage time coverage

32 GPU Metrics Sampling - how to interpret it

Interpreting GPU Metrics Sampling
● More info, no trace overhead, collected device-wide OOP

○ But no kernel names

● GR Active ⇒ It’s doing some work
○ % GPU has any SM active (or NVENC, NVDEC, graphics)

● SM Active ⇒ How well is it using the width of the GPU
○ If low, increase batch sizes or look at kernel grid dimension

● SM Instructions Issued ⇒ Is it performing a lot of instructions
○ or might I be waiting on memory if low
○ Not enough warps to cover memory latency; larger kernel block dimensions can help

● SM Instructions tensor active ⇒ Using very faster special hardware
○ performance gains but slightly counter SM instructions can drop (vary by architecture)
○ can be limited by SM shared memory & waiting for loads

● Warp occupancy ⇒ Ratio of SM code types
○ Don’t optimize for this! Ultra-optimized kernels don’t always maximize warps!!! Ex: cuBLAS

● Memory and bus activity

● NOTE 1: Requires disabling DCGM and any DL framework built-in profiler
● NOTE 2: For lower priv access https://developer.nvidia.com/ERR_NVGPUCTRPERM

33

https://developer.nvidia.com/ERR_NVGPUCTRPERM

34
GPU Metrics Sampling

Ex: TensorFlow2 ResNet50

35 GPU Metrics Sampling - Mask-RCNN

36 GPU Metrics Sampling - NCCL using NVLink

● Ensure using tensor cores & correct format to avoid conversions/transposes
● Increase batch/grid sizes to more efficiently use the GPUs’ width
● Conventional parallelism

○ Increase framework’s worker threads (CLI args)
○ Python async, await, future, tasks, Dask, …
○ C/C++ OpenMP, OpenACC, pthreads, boost::asio, std::async, …

● Parallel pipelining - each stage can run in parallel
○ Are there a data dependencies between stages? No? Parallelize!
○ Ex: prefetch next batch/iteration of data while current batch/iteration is executing
○ Ex: within loader: net transfer, map, parse, load & transform, upload to GPU

● Reorder - could i do that sooner?
○ Prefetch - load data sooner & in parallel so it’s there before needed

● Fusing tiny kernels, copies, or memsets, or use cudaGraphs
● Overlap training (or inference)

○ CUDA MPS to share contexts & avoid switch overhead
○ Possibly difficult to fix both into memory.

Optimization Tactics (1)

37

● Pass buffers by pointer - avoid copies
● Multi-buffering - don’t make everyone wait on the same piece of memory

○ Often referred to as double or triple buffering; consider swap patterns
● Avoid returning data to CPU
● Avoid CPU pageable memory (prefer pinned / page-locked)
● Avoid unnecessary synchronizes

○ Avoid cuda*Synchronize functions, use cudaStreamWaitEvent instead
○ Avoid synchronous memory operation
○ Avoid CUDA default stream (if multi-stream)

● Pre-allocate memory, or use recycling tactics
● Minimize CUDA managed memory page faults on CPU & GPU (use prefetch)
● …

Optimization Tactics (2)

38

39

AWS Blog: Deepset achieves a 3.9x speedup and 12.8x cost reduction for training
NLP models by working with AWS and NVIDIA

Deepset achieves a 3.9x speedup and 12.8x cost reduction for training

NLP models by working with AWS and NVIDIA

https://aws.amazon.com/blogs/machine-learning/deepset-achieves-a-3-9x-speedup-an
d-12-8x-cost-reduction-for-training-nlp-models-by-working-with-aws-and-nvidia/

Cliff-notes

Heavy use of Nsight Systems

Switched from torch.nn.DataParallel (DP) to DistributedDataParallel (DDP)

Enabled larger batch sizes by switching to Automatic Mixed Precision (AMP)

Introduced a StreamingDataSilo & DALI to prefetch data

…
40

https://aws.amazon.com/blogs/machine-learning/deepset-achieves-a-3-9x-speedup-and-12-8x-cost-reduction-for-training-nlp-models-by-working-with-aws-and-nvidia/
https://aws.amazon.com/blogs/machine-learning/deepset-achieves-a-3-9x-speedup-and-12-8x-cost-reduction-for-training-nlp-models-by-working-with-aws-and-nvidia/

41

Fusion opportunities
CPU launch cost + small GPU work size ≈ GPU sparse idle

This can apply to DNN nodes/layers

42

cudaMemcpyAsync behaving synchronous
Device to host pageable memory

Mitigate with pinned memory

~150us

~1.2us

43

Example GPU idle caused by stream synchronization

44

CPU & OS

For cases not caused by CUDA API usage or clarified by NVTX

Permissions

Some features are tied to OS permissions

● CPU thread state, core occupancy, user-space call-stack periodic sampling
○ Paranoid level too high
○ Container SECCOMP blocking perf_event_open
○ OS kernel samples require even lower paranoid levels and/or sudo

● ftrace
○ CAP_SYS_ADMIN | CAP_SYS_PERFMON

See online Nsight Systems documentation, and UI warnings
https://docs.nvidia.com/nsight-systems/InstallationGuide/index.html#linux-requirements
https://docs.nvidia.com/nsight-systems/UserGuide/index.html#docker-profiling

45

https://docs.nvidia.com/nsight-systems/InstallationGuide/index.html#linux-requirements
https://docs.nvidia.com/nsight-systems/UserGuide/index.html#docker-profiling

46

OS Runtime API Trace

Example:Mask-RCNN

Map/unmap hiccups

Mitigate by pipelining

● Map 1 batch ahead
● Unmap last batch
● Swap pointers here instead

47

OS runtime trace (OSRT)
Includes backtraces of long running functions

48

FTrace
Example demonstrates interrupts

49

Function table shows statistics from periodic call-stack backtraces

50

CLI statistics and export

DL Rank Data Processing Imbalances

● Hurry up and wait
○ If anyone takes longer to reach the all-reduce

then everyone is stuck!!!
● Load time

○ Did this batch take longer than the norm to load?
○ If parallel, did any rank have to wait?

● Processing time
○ Did this rank take longer than other

● Some remedies
○ Fix the data

■ 1 JPEG among PNGs or 1 MP3 among WAVs?
■ Wrong resolution, sample rate, precision, …

○ Reorganize your batch order
● A perfect job for scripts & statistics

51

52

Stats/Export - CUDA kernel summary

53
Stats/Export - NVTX code annotations

Note this includes TensorRT domains

54 Event Table & Statistics Table

55

Cluster

56

Multi-node

All the problems on a single node server (DONE)

Now you need to worry about

Working with your cluster job/task scheduler

Multi-report views

But how do you pick which reports among thousands?

Wall-clock time

Networking

Data analysis

Working with your cluster work scheduler

● srun <slurm_args> nsys profile <nsys_args> app <app_args>
● Make sure your report names are unique

○ --output=friendlyName_%q{SLURM_NODEID}_%q{SLURM_PROCID}.nsys-rep
● Avoid getting system-wide data from all ranks by moving nsys & app into a

shell script
○ IF [$SLURM_LOCALID == 0] THEN

■ Add --nic-metrics=true
■ Add --gpu-metrics-device=all

● LIMIT your recording time otherwise you will run out of memory opening
reports in the GUI on your laptop

○ 30sec-1min is often good enough. Or even less… capture a few iteration.
● I have more reports than I know what to do with. Now what?

57

58

Loading Multiple Reports into one Timeline
 <= 2022.1 via file menu

>= 2022.2 via open dialog, select multiple report
NOTE: Pick a subset of reports otherwise you may run out of RAM

Wall-Clock Time

Timelines need it, especially if they are going to fit together accurately

Data is collected independently

Relies on the system’s wall clock time to be accurate

Otherwise there is timeline drift

From worst to best

● NTP = 1ms accuracy
● PTP software = 10 to 100 microseconds accuracy
● PTP hardware = can get down to ~10ns

59

Data Analysis

● Did not manually look at all files…. too many!
○ Maybe mix-n-match randomly with multi-report views?

● Use data analysis to hone in on interesting iterations → ranks → report
○ Cluster iteration times global total time
○ Per-rank iteration data load times
○ Per-rank iteration processing times

■ Total time to reach all-reduce
■ Forward pass
■ Backward pass

○ Per-rank iteration communication time, if not overlapped
○ DNN layer stats?

● Visually compare an average, min, & max report to try to understand how and why they differ

● You may need to add NVTX to your app to get some of this information
● GTC Talk: Scaling Transformer in PyTorch Across Multiple Nodes

○ https://developer.nvidia.com/gtc/2020/video/s21351
○ We’ll make this type of stuff easier in the future

60

https://developer.nvidia.com/gtc/2020/video/s21351

Data Processing Imbalances

● Make every rank consistent in the iteration
● Load time

○ Did this batch take longer than the norm to load?
○ If parallel, did any rank have to wait?

● Processing time
○ Did this batch take longer than the norm to process with the DNN?

● Hurry up and wait
○ If anyone takes longer to reach the all-reduce, everyone is stuck!!!

● Some remedies
○ Fix the data

■ A lonely JPEG in a PNG world, or MP3 among WAVs?
■ Wrong resolution, sample rate, precision, …

○ Reorganize your batch order

61

62

Other Products

63

Nsight Compute

Interactive CUDA API debugger

Advanced CUDA Kernel Profiling

CUDA-C/PTX/SASS correlation

Source correlated performance metrics

Diff’ing for performance reports

Programmable expert system

NVTX-range-defined kernel profiling

High performance GUI visualization and CLI data collection

NOTE: See earlier slides about relationship with Nsight Systems! Start there to get big picture!

Windows 10, Linux Ubuntu 16.04/18.04/20.4, RHEL 7.x

CUDA Kernel Profiler

Nsight Deep Learning Designer
A new tools to add DL-based image processing feature to
applications that have strict performance requirements

Designer, inspector, profiler image & video processing models

Download
https://developer.nvidia.com/nsight-dl-designer

Quick intro(2.5min) https://www.youtube.com/watch?v=7AraPM8dhyc

Extended Intro (35min)
https://www.nvidia.com/en-us/on-demand/session/siggraph2021-s
igg21-s-05/?playlistId=playList-83726b46-d20a-40c2-a218-18c1b
5fb0759

64

https://developer.nvidia.com/nsight-dl-designer
https://www.youtube.com/watch?v=7AraPM8dhyc
https://www.nvidia.com/en-us/on-demand/session/siggraph2021-sigg21-s-05/?playlistId=playList-83726b46-d20a-40c2-a218-18c1b5fb0759
https://www.nvidia.com/en-us/on-demand/session/siggraph2021-sigg21-s-05/?playlistId=playList-83726b46-d20a-40c2-a218-18c1b5fb0759
https://www.nvidia.com/en-us/on-demand/session/siggraph2021-sigg21-s-05/?playlistId=playList-83726b46-d20a-40c2-a218-18c1b5fb0759

Nsight Visual Studio Code Edition

VSCode plugin for CUDA dev, compile, & debug

https://developer.nvidia.com/nsight-visual-studio-co
de-edition

Quick Intro (4min)
https://www.youtube.com/watch?v=gN3XeFwZ4ng

Microsoft Intro (14min)
https://www.youtube.com/watch?v=l6PgYhiQr-I

65

https://developer.nvidia.com/nsight-visual-studio-code-edition
https://developer.nvidia.com/nsight-visual-studio-code-edition
https://www.youtube.com/watch?v=gN3XeFwZ4ng
https://www.youtube.com/watch?v=l6PgYhiQr-I

66

ADDITIONAL CUDA DEVELOPER TOOLS

CUDA-gdb

Unified CPU and CUDA Debugging

CUDA-C/PTX/SASS support

Compute Sanitizer – API and utility

memcheck : reports out of bounds/misaligned memory access errors

racecheck : identifies races on __shared__ memory

initcheck : usage of uninitialized global memory

synccheck : identify invalid usage of __syncthreads() and __syncwarp()

Command-line CUDA tools

67

Download https://developer.nvidia.com/nsight-systems
 NOTE: Website version is newer than CUDA Toolkit

Let us know about your successes!

THANK YOU!

https://developer.nvidia.com/nsight-systems

