Large Language Model Inference Optimizations

When was Argonne National @ o 1946
® Llaboratory founded?).

KRISHNA TEJA CHITTY-VENKATA SIDDHISANKET RASKAR MURALI EMANI
Postdoctoral Appointee Assistant Computer Scientist Computer Scientist
Argonne National Laboratory Argonne National Laboratory Argonne National Laboratory

2024 ALCF Hands-on HPC Workshop
OCTOBER 30™, 2024

Presentation Agenda

* LLM Inference Motivation
o How LLM Inference is becoming more important and more computationally demanding workload

» Optimization Techniques
o Transformer Model Optimization Strategies
= GQA, MoE

o LLM Algorithm Optimization Methods
» Pruning, Quantization, KV Cache, Speculative Decoding

o Memory management and Hardware Parallelism Methods
» PaggedAttention, Tensor, Pipeline and Expert Parallelism

Hands on Agenda
* Run a sample LLaMA-3-8B using HuggingFace and vLLM Inference

2 Argonne Leadership Computing Facility Argonne &

Large Language Models (LLMs)

« LLMis a deep learning algorithm that's equipped to summarize, translate, predict, and generate human-
sounding text to convey ideas and concepts.

« They leverage vast amounts of data and sophisticated algorithms to perform a wide range of tasks

« They rely on a massive number of parameters, which allows them to capture intricate language
patterns and context.

« Examples of popular LLMs include OpenAl’'s GPT, Google’s BERT, and Meta’s LLaMA.

CRY & Gshara Publicly Available \
| |
— 2019 — 050 G nrs S pancua 'G.l;' Ernic 3.0 o o ° “v‘ue e ;
=~ 2021 AR A1 . Text Generation \ % . Data E ymmg s
GPT3@ =14 = #2. PLUG labs Jurassic-1 Erbediifus BL M Centric S;Zstam
Godex @ FLAN AN CPM-2 Classification il ‘e LR T Mansgement
TO O) 1) —— J % i G LaMDA Knowledge Answering TR . s/ Content &
insp: uan 1. . ~ .
Anthropic B gy ercrovaNavER } - © sihacode Speech Recognition ﬁ ;li Vector Q Greatcn
plidaly @ A @ Chinchilla) Langags Transiation . BigCade ‘ .
Ernie 3.0 Titan .éb. InstructGPT @ 2022 CodeGeeX Dialog Generation openai/whisper
s G
conr@ ot O Gu: Q@ g W /
n mosaic™ § =
Flan-T5 =P
GLaM G MT-NLG . orT 00 J PaLM an- . mea it & ,;“A ::s::sg
GPr-Neox-208 [/ Qrm G Ranpaym *M PanGu-X Diocrr Boohers oo B x,‘?ﬁ o =
ST 0 cum @) Tlustuc i \ —)\(Luminous G Bara 85 icroson StAbIlity.0i ?9@" 2y Search
mT0 ’ Cohere @@ IsILL Roohsre @0 AL R ,// Playgrounds &
AlexaTM a ® 0Q LLaMA Al labs pen 2 Prompt
BLOOMZ 0 P—= 11-12 | ANTHROP\C £y Googh > Engineering Flow
WeLM 2023 —— |4 —_ g 5 Builders
Galatica (Q | I Y pataroResT
OPT-IML (X) ChatGPT @ GPT-4 @
3 A Leadership C ting Facilit https://www.nextbigfuture.com/2023/04/timeline-of-open-and-proprietary-large-language-models.html Argonne Vi
- . NATIONAL LABORATORY
rgonne Leadership Lomputing Facility https://dataforest.ai/blog/large-language-models-advanced-communication

Need for LLM Inference Optimizations

4

LLMs, with billions of parameters, can
be slow during inference due to the
computational load required to
process large amounts of data.

Many applications require real time
responses from LLMs, which can
be challenging.

The high computational demands of
LLMs translate into significant
operational costs.

LLM Inference optimization

methods reduces energy consumption
and hardware requirements, making
deployments more cost-effective

Argonne Leadership Computing Facility

90

80

70

MMLU

50

40

30

1.00E+22

)
Dh

AT

.

Scaling Open
Language Models

h Llama 3 is here!

1.00E+23 1.00E+24

less compute « Active Param x Training Tokens, log scale — more compute

https://www.interconnects.ai/p/llama-3-and-scaling-open-lims

Argonne &

LLM Pretraining

Large Unlabeled

Text Dataset

LLM Finetuning

\ 4

Labeled Text Dataset

Large Language Model

(Unsupervised Learning)

Pretrained Large

LLM Inference

What is the capital of the
United States of America?

\ 4

Language Model

(Supervised Learning)

(Prompt)

5 Argonne Leadership Computing Facility

v

Trained and Finetuned
Large Language Model

The Capital of United
States of America is

\ 4

Washington DC

(Response)

Argonne &

LLM Inference 101

innovation

F 3

across

LLM

A

of technology
LLM LLM
Al is the Al is the
future future of
T=1 T=2
- Prefill > <

Al is the
future of
technology

LLM

Argonne Leadership Computing Facility

Al is the
future of
technology
and

Generation

Al is the
future of
technology
and
innovation

T=5

A 4

Argonne &

LLM Inference — Basic Terms

7

Input Length: Input Length refers to the total number of tokens given to an LLM as input

prompt for a single query.

Output Length: Output Size, also referred to as maximum new tokens is the number of tokens

produced by the model as a response to a single input prompt.

Batch Size: Batch Size refers to the number of input sequences processed and new output

sequences produced simultaneously.

Prompts

AN

Batch Size

=/

Input Length

Argonne Leadership Computing Facility

LLM

Responses

—

Output Length

Batch Size

Argonne &

Performance Metrics

Perplexity quantifies the model’s level of surprise when encountering new data to generate a new token. A lower
perplexity indicates better performance

Throughput as the total number of tokens (both input and output) processed by the hardware per second.

Batch Size x (Input + Output Tokens)
End-to-End Latency

throughput =

Time to First Token (TTFT) is the amount of time

required to produce the first output token after Prompt/Prefill phase Decode phase(Token generation)
receiving an input prompt. 14 e A
9 putp P ! LLM LLM | LLM | LLM
: iteration | : iteration 2 : iteration 3 : iteration 4
44 4 ! !) !
H - | |
Time Per_Out.put Token refers to the . Isapplea fuit? o 15 apple a fruit? || Yes || it | EOS
average time interval between generating : | i !
consecutive tokens. PI————— £ N e iy
e . Time-Per- | Time-Per- |
! Time-To-First-Token :Output-Token | Output-Token :
Argonne &

8 Argonne Leadership Computing Facility

Classification of LLM Inference Methods

Type of Inference
Optimizations

Efficient Transformer
Neural Network Design

LLM Algorithm
Optimization Methods

Hardware and memory
management Techniques

}

}

A 4

« Group Query
Attention (GQA)

» Mixture of Experts
(MoE)

9 Argonne Leadership Computing Facility

* Pruning

* Quantization

« KV Caching

» Speculative
Decoding

PaggedAttention
Parallelism Methods
 Tensor
* Pipeline
« Expert
» Hybrid

uuuuuuuuuuuuuuuuuu

Classification of LLM Inference Methods

Type of Inference
Optimizations

Efficient Transformer
Neural Network Design

}

« Group Query
Attention (GQA)

» Mixture of Experts
(MoE)

10 Argonne Leadership Computing Facility

Argonne &

Transformer Model

Transformer Neural Network is comprised of two important layers: next
transformer

) block
1) Attention Layer Y

2) Feed Forward Network (FFN) [Hidden State]

F 3
Norm ;f)
‘ N
»| Hidden State N‘j{”‘
\ T J
Feed Forward
~ ~ Network
) (MLP or FFN)
Attention Layer
k) F 3
r
r ~ [Hidden State]
Hidden State
- 4

!

11 Argonne Leadership Computing Facility Argonne &

Multi Head Self Attention

_| hidden size]

[num head, seqlen, head dim]

[seq len, inner

Input

[seqlen,
hidden size]

[seqlen, inner
hidden size]

»| Reshape

Y

[seqlen, inner
hidden size]

Reshape

[num head, seqlen, head dim]

A

Matmul

A

transpose

[num head, seq len, head dim]

-

L

Reshape

A

[num head, seqlen, seqlen]

Matmul

[num head, seqlen,

head dim]

Attention = (Q*K)*V

12 Argonne Leadership Computing Facility

[seqlen,
hidden size]
»@R
1/
A
Argonne &

Multi-head Attention (MHA) vs Group Query Attention (GQA)

Value

Key

Query

Multi-head Attention

—

)

SR

)

—

ol [1]|2]|3||4]||5]|6]|7
o [1||2]|3][4]|[5]]6]|7
R
I T T R T e
o [1][2][3]]4||5||6]||7

Grouped-Query Attention

Value 0 l
/ \ . .
\

Key

0
Lo

 GQA reduces memory and compute by a factor of "group size"

13 Argonne Leadership Computing Facility

Argonne &

Dense Model

 Dense LLMs are the traditional layer-by-layer transformer models Output
* In Dense models, all the layers are connected in series and the Layer 3
activations are processed layer-by-layer T

« Example: LLaMA-2-7B, LLaMA-3-8B

Layer 2

o

1

Layer 1

Input

14 Argonne Leadership Computing Facility Argonne &

Mlxture of Experts (MoE)

MoE models employ a combination of specialized sub-networks called experts and a gating mechanism to
selectively activate only a subset of parameters for each input

* Inaregular dense LLM, all parameters are active while in MoE only a few model weights are utilized,
decreasing the compute time of the layer

* Example: Mixtral-8x7B, GPT-MoE 1.8T

Ouput | == oL
—t' -“4__‘~
- -
Y e R
-
”

Weights |FFN1 | [FFN2 | [FFN3 | [FFN4 | |[FFN1 | [FFN2 |[FFN3 | [FFN4 |

Generated By
Gating Network ‘\
S - L4 ’
S NN e, e .
/‘\\ . .
- Y [=
Expert 3 stigs Expert n p = 065 S ! p 08
DDD

Ll
Gating Network | Roufer |
(Token]

Router |
Token 1

We Like

Input

. . . https://deepgram.com/learn/mixture-of-experts-ml-model-guide Argonne &
15 Argonne Leadership Computing Facility BONNE =

Classification of LLM Inference Methods

Type of Inference
Optimizations

Efficient Transformer
Neural Network Design

LLM Algorithm
Optimization Methods

Hardware and memory
management Techniques

}

}

A 4

« Group Query
Attention (GQA)

» Mixture of Experts
(MoE)

16 Argonne Leadership Computing Facility

* Pruning

* Quantization

« KV Caching

» Speculative
Decoding

PaggedAttention
Parallelism Methods
 Tensor
* Pipeline
« Expert
» Hybrid

uuuuuuuuuuuuuuuuuu

Classification of LLM Inference Methods

Type of Inference
Optimizations

LLM Algorithm
Optimization Methods

!

* Pruning

« Quantization

« KV Caching

» Speculative
Decoding

17 Argonne Leadership Computing Facility Argonne &

Challenge for LLM deployment: colossal sizes

» Despite being powerful, LLMs are hard to serve
 LLM sizes and computation are increasing exponentially
 We need model compression techniques and system support to bridge the gap

1 GPT-MoE-1.8T"

. MT-NLG 1800B

S 1000 We need efficient
% 'nE algorithms and systems

= 100 2
3 2 L VIO TPUV to bridge the gap.
2 5 e 32GB 32GB

©
-l 0

® MegatronLM

g 1 8.3B

w

@

8 o . O Model Size

= Transformer GPU Memory

i 0.058
2017 2019 2021 2022 2024

*: Jensen Huang, NVIDIA GTC 2024

Lin et al. AWQ: Activation-aware Weight Quantization
for LLM Compression and Acceleration

18 Argonne Leadership Computing Facility Argonne &

Pruning

Pruning in general refers to cutting down branches/leaves

Neural Network Pruning refers to removing weights/connection without compromising the accuracy

The parameters which do not contribute to the final accuracy are removed to save memory

Example: Magnitude-based

before pruning after pruning

pruning
synapses

pruning
neurons

Before Prune After

Han et al. "Learning both Weights and

, , " i ici " Argonne &
19 Argonne Leadership Computing Facility Connections for Efficient Neural Networks 80Nne

LLM Pruning Methods

* LLM pruning refers to pruning to pruning Heads or FFN layer in the transformer model

* LLM Pruning Examples: LLM-Pruner, WActiGrad

head, head, head2 head,
FC-1 FC-1
:> Ifp op _lp Olp
Tokens FC-2 15kens Tokens FC-2 1okens
- Head Dim — —
44— |nner Hidden Size ——————————>

XX
,0

- ORSC
X7 o 0
YA AKX
LN @ NN

2 \ /

(b) Head Generation y

e’:"‘:é. \ " N

X Y/

head, head, head, head, 17] {w ,‘\

L_Head Dim — .
States N 4————— |nner Hidden Size > F F N p runi ng
(a) Hidden States (c) Head Pruning
Head pruning KT Chitty-Venkata et al. "WActiGrad: Structured Pruning
for Efficient Finetuning and Inference of Large a
. . . Language Models on Al Accelerators" Argonne
20 Argonne Leadership Computing Facility guag BONNE =

Quantization

Quantization converts the weights and activations of a model from a high-precision data representation to
a lower-precision data representation

Quantization helps in reducing the model size by using less number of bits to represent the parameters
For example, quantizing FP32 to Int8 reduces the model size by 4x

Quantization is extremely important for LLM inference, given the size of complexity of the architecture

FP32 NENNNNNNNRR RN NRRARRNAAom o [BR] oe o [
FP16 NENNNNARRRRRRRNN w 2 a0 W) x|

M sign
Quantization
. s B - o I

FP8 IIIIIIII B Exponent
FP32 INT8

INTS8 IIIIIIII . Mantissa

https://developer.nvidia.com/blog/achieving-fp32-
accuracy-for-int8-inference-using-quantization-aware-
training-with-tensorrt/

21 Argonne Leadership Computing Facility Argonne &

Benefits of LLM Quantization

LLaMa-3-70B model requires at least :

- FP16: 140GB memory—4 x 40GB A100 GPUs ‘ * ‘ ‘
- INT8: 70GB memory—2 x 40GB A100 GPU \“ ‘

Embeddings

. INT4: 35GB memory—1 x 40GB A100 GPU * { i
i i

i Q_;lvan_tiied Qa{an_tized Q&ran_tized]

« LLM Quantization Methods: GPTQ, AWQ | ko o Uee :
| : I |

' cache (V cache |

| EREE

| |

| |

i i

| i

/

Quantized
Weight
: FC
\ . - B
Liu et al. LLM-QAT: Data-Free Quantization Aware
Training for Large Language Models Argonneb

22 Argonne Leadership Computing Facility

LLM Inference 101

innovation

A

across

LLM

of technology
LLM LLM
Al is the Al is the
future future of
T=1 T=2
-«— Prefill > <

Al is the
future of
technology

23 Argonne Leadership Computing Facility

Al is the
future of
technology
and

Generation

Al is the
future of
technology
and
innovation

T=5

A 4

Argonne &

LLM Inference with KV Cache

of technology
LLM LLM
Al is the of
future
T=1 T=2
Prefill > <

24 Argonne Leadership Computing Facility

and innovation across
LLM LLM
technology and innovation
T=3 T=4 T=5
Generation >
Argonne &

LLM Inference - Time Step 0 - Prefill

Query States Key States
(3
> O
X °
R} R
c % E -
L 3" 8 3
A 2 © 2
1 T 1
Head Dim 0 Sqg Len 0
*
%*&6
Key Tensors in Attention
1) Query States 3 3 = 3
2) Key States = 5 g
3) Attn Weights “ 1
g om0 =
Value States Attn Output

25 Argonne Leadership Computing Facility Argonne &

LLM Inference Without KV Cache - Time Step 1

Query States Key States
(83
> ()

% e®

X B
E ® 5 = 5
3 © -
= o @
w I

SqlLen+1
Head Dim

O
>
Dy
": == -—
= +
3 c
o 3
@ o
R~ @
Head Dim Head Dim
Value States Attn Output
26 Argonne Leadership Computing Facility

Argonne &

LLM Inference With KV Cache - Time Step 1

Query States Key States
&
R
%\""’66
=
* 8
- p— Cache
)
Head Dim e
SqlLen + 1

27 Argonne Leadership Computing Facility

Attn Weights

%*366
|

SqlLen+1
*

%‘3‘@&

= (Cache =

SqlLen+ 1

Head Dim
Value States

a«‘?‘&b

Head Dim

Attn Output

Argonne &

Speculative Decoding

« Speculative Decoding is a widely used technique to speed up inference for LLMs without greatly
compromising the output quality

« During inference, the speculative decoding method utilizes a smaller draft model (Eg: OPT-125M) to
generate speculative tokens and then uses the larger LLM (LLaMA-2-7B) to verify those draft tokens.

 Both draft model and the main model should have the same vocab size

“The orange cat” =——pf — s
«+» —— Small Model — “The crange cat vt e s i e B
“The orange cat ate My” ——p Tita l - (Greedy) Decoding *
A ' ;

. Newtoken1 Probabiity Newtoken2 Probability

“aab” 0.001

“Alco” 0.04 | my" 087

“ate” 09 | e 0.02

https://www.titanml.co/glossary/speculative-decoding

28 Argonne Leadership Computing Facility Argonne &

Classification of LLM Inference Methods

Type of Inference
Optimizations

Efficient Transformer
Neural Network Design

LLM Algorithm
Optimization Methods

Hardware and memory
management Techniques

}

}

A 4

« Group Query
Attention (GQA)

» Mixture of Experts
(MoE)

29 Argonne Leadership Computing Facility

* Pruning

* Quantization

« KV Caching

» Speculative
Decoding

PaggedAttention
Parallelism Methods
 Tensor
* Pipeline
« Expert
» Hybrid

uuuuuuuuuuuuuuuuuu

Classification of LLM Inference Methods

Type of Inference
Optimizations

Hardware and memory
management Techniques

A 4

« PaggedAttention
 Parallelism Methods

« Tensor
* Pipeline
« Expert
« Hybrid

30 Argonne Leadership Computing Facility Argonne &

PaggedAttention

« Paged Attention partitions the KV cache of each sequence into smaller, more manageable "pages" or
"blocks". Each block contains key-value vectors for a fixed number of tokens.

KV Cache
alblc|d|]e|flg|h]i]j|lk|]!I]|m|n]J]o]|lp|lg]|]Tr|s/|t]ju]v]|w]Xx
albl|lc|d]|]e|f|lg|lh]i]|]jl|lk|]!I|m|n]J]o|lp|lg|Tr]s|[t]lu]vVv | w]Xx

KV Cache Block 0 KV Cache Block 1 KV Cache Block 2

@ Physical Memory

KV CacheBlock0 |a|b|c |d]e]| f|g]|h

KV CacheBlock2 [| r|s |t |u]|v |[w]x Block Size (B) = 8

KV CacheBlock1 |1 | J | kK|l |m|n|o|p

31 Argonne Leadership Computing Facility

Argonne &

PaggedAttention Workflow

0. Before generation.

Physical KV cache blocks

G;q\) Prompt: “Alan Turing is a computer scientist” Block 0
A / Completion: *’

=/ Block 1
Step 0: Getting the prompt and Logical KV cache blocks Bocktabe ook
initializing the block size for KV Cache Block 0 Physical [#Fed| Biock 3

block no. | slots
Block 1 - - Block 4
Block 2 - = Block 5
Block 3 — - Block 6
Block 7

1. Allocate space and store the prompt's KV cache.
Physical KV cache blocks
Seq '\ Prompt: “Alan Turing is a computer scientist” Block 0
A / Completion: *”
- Block 1 |computer| scientist

. . Logical KV cache blocks Block tabl Block 2

Step 1: Allocating the memory for KV cache ock table
Block 0 | Alan Turing is a Physical | # Filled Block 3

\ block no. | slots

Block 1 |computer| scientist 7 4 Block 4

\ :
Block 2 = ~ Block 5
Block 3 — - Block 6

Block 7 | Alan Turing is a

Kwon et al. Efficient Memory Management for Large Arconne &
32 Argonne Leadership Computing Facility Language Model Serving with PagedAttention BONNE =

PaggedAttention Workflow

Step 2: Generating the new token and
appending the new token's KV Cache to
the previously initialized page

Step 3: Generating the new token until the
current page is filled

33 Argonne Leadership Computing Facility

2. Generated 1st token.

\f _/ Completion: “and"

Block 0

Block 1

Block 2

Block 3

Y
Seq\ Prompt: “Alan Turing is a computer scientist”

Logical KV cache blocks

Alan

Turing

is

Block table

computer

scientist

and

Physical
block no.

Filled
slots

7

4

N

3

3. Generated 2nd token.

Seq)
-~ A -

Block 0

Block 1

Block 2

Block 3

Logical KV cache blocks

Prompt: “Alan Turing is a computer scientist”

Completion: “and mathematician

Block table
Alan Turing is a \ Physical | # Filled
block no. | slots
computer| scientist and m \ 7 4
1 4

Kwon et al. Efficient Memory Management for Large
Language Model Serving with PagedAttention

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Physical KV cache blocks

computer| scientist and
Alan Turing is a
Physical KV cache blocks
e mathe-
computer| scientist and matie]
Alan Turing is a
Argonne &

NATIONAL LABORATORY

PaggedAttention Workflow

4. Generated 3rd token. Allocate new block.

Step 4: Allocating a new page/block as
the previous one is completely filled

Step 5: Continue generating new tokens

34 Argonne Leadership Computing Facility

@

Block 0

Block 1

Block 2

Block 3

Logical KV cache blocks

Prompt: “Alan Turing is a computer scientist”
Completion: “and mathematician renowned"

Block table
Alan Turing is a Physical | # Filled
TS \ block no. | slots
computer| scientist and patiian \ 7 4
1 4
R e 1

5. Generated 4th token.

Seq)
&)

Block 0

Block 1

Block 2

Block 3

Logical KV cache blocks

Prompt: “Alan Turing is a computer scientist”
Completion: “and mathematician renowned for”

Block table
Alan Turing is a Physical | # Filled
R \ block no. | slots
computer| scientist and hatician \ 7 4
1 4
renowned for T~ 3 2

Kwon et al. Efficient Memory Management for Large
Language Model Serving with PagedAttention

Block 0

Block 1

Block 2

Physical KV cache blocks

computer

scientist

and

Allocated on demand

mathe-
~~tician

Block 3 E
Block 4
Block 5
Block 6

Block 7

Alan

Turing

Physical KV cache blocks

Block 0

Block 1

computer

scientist

and

mathe-
matician

Block 2

Block 3

renowned

Block 4

Block 5

Block 6

Block 7

Alan

Turing

o NATIONAL LABORATORY

Parallelism Techniques

| GPU-0 | GPU-1 |

- Tensor Parallelism Pp— > : -
« Distributes the weight tensor of a layer across | Tensor-1 || || Layer-1 | Expert - 1

multiple devices. f ' Nl s ~
. : _ Tensor - 2 Layer - 2 Expert - 2

* The devices communicate with each other to ; : 40 . / e
share the input and output activations. | Tensor-3 || | | Layer-3 Expert - 3
T . rTensor-4\ (La er-4 Expert - 4

+ Pipeline Parallelism SR > 4 J< e Y

« Divides the model into different layers, and each Tensor-5 || || Layer-5 | Expert - 5
device computes its aSS|g.ned. layers .anq passes [Tensor - 6 T) Expert - 6

the output to the next device in the pipeline. . ; 4 B 4 e
Tensor -7 Layer -7 Expert -7
- Expert Parallelism | Tenjfr -8 Jj \L Layer - 8) Expert - 8
. Dlslttrllblut(ejs the experts of the MoE model across () Tensor (b} Pipeline () Expest

muftiple devices. Parallelism Parallelism Parallelism

Argonne &

35 Argonne Leadership Computing Facility

Inference Frameworks

 There has been arise in Inference frameworks for LLM over the last few years

TensorRT-LLM Deepspeed-Mll LLaMA.cpp

Can run on diverse Limited to Nvidia GPUs, Limited to Nvidia Can run on

hardware platforms such as A100, H100, GPUs (such as A100, diverse hardware
including Intel, Nvidia, GH200 series H100, GH200) platforms including Intel,
AMD GPUs and Al Nvidia, AMD GPUs

accelerators such as
Graphcore and Habana

Supports wide range of Supports wide Lacks many key LLM Lacks many
Inference Optimizations range of Inference optimizations instead relies optimizations and does
Optimizations on GPU kernel optimizations not scale with increase in
number of GPUs
Has wide Community Developed within Nvidia Developed within Microsoft Has wide Community
Support support

f LLM '] DeepSpeed Ml

36 Argonne Leadership Computing Facility T Ollowusason

LLM Inference Publication

LLM-Inference-Bench: Inference Benchmarking of
Large Language Models on Al Accelerators

Krishna Teja Chitty-Venkata*"

schittyvenkata@anl.gov sraskar@anl.gov
Ken Raffenetti®
raffenet@anl.gov

Valerie Taylor*
vtaylor@anl.gov

Murali Emani®
memani@anl.gov

Siddhisanket Raskar*" Bharat Kale* Farah Ferdaus* Aditya Tanikanti*

kale@anl.gov fferdaus@anl.gov atanikanti@anl.gov

Venkatram Vishwanath®
venkat@anl.gov

*Argonne National Laboratory. Lemont, IL 60439, USA

Abstract—Large Language Models (LLMs) have propelled
groundbreaking advancements across several domains and are
commonly used for text generation applications. However, the
computational demands of these complex models pose significant
challenges, requiring efficient hardware acceleration. Bench-
marking the performance of LLMs across diverse hardware
platforms is crucial to understanding their scalability and
throughput characteristics. We introduce LLM-Inference-Bench,
a comprehensive benchmarking suite to ev te the hardware
inference performance of LLMs. We thoroughly analyze diverse
hardware platforms, including GPUs from Nvidia and AMD
and specialized Al accelerators, Intel Habana and SambaNova.
Our evaluation includes several LLM inference frameworks and
models from LLaMA, Mistral, and Qwen families with 7B and
T0B parameters. Our benchmarking results reveal the strengths
and tations of various models, hardware platforms, and
inference frameworks. We provide an interactive dashboard to
help iden configurations for optimal performance for a given
hardware p

responses or make predictions. Today. efficient inference is
essential for generation capabilities across various applica-
tions, such as chatbots. language translation, and information
retrieval systems. As LLMs continue to grow in size and
complexity, optimizing inference becomes increasingly crucial
to balance performance with computational resources, energy
consumption, and response times.

In recent years, the development of hardware accelerators
for Deep Learning (DL) applications, such as GPUs and TPUs,
has been driven to meet the computational demands of large
models. These accelerators are designed to enhance perfor-
mance and energy efficiency, which is particularly crucial for
LLMs that consist of billions of parameters. These hardware
solutions significantly improve performance, including faster
training times, reduced inference latency, and enhanced scala-
bility. This is essential for developing and deploying sophisti-

15th IEEE International Workshop on

Performance Modeling, Benchmarking and
Simulation of High Performance Computer

Systems

Atlanta held in conjunction with SC24: The International Conference for High Performance
GA Computing, Networking, Storage and Analysis

37 Argonne Leadership Computing Facility

t

vLLM: 7B Models on One GPU
for Input/Output Length 1024 (fp16)

8000
5000
3000

1000+

5001
300+

—
(=1
o

Throughput (Tokens/sec)
in log scale

1 16 32 64

Batch Size
Hardware & Model

H100 LLaMA-3-8B === MI300X LLaMA-3-8B =#= GI200 LLaMA-2-7TB

A100 LLaMA-3-8B -=- H100 LLaMA-2-7B

—e— MI250 LLaMA-2-7B

GH200 LLaMA-3-8B =e= A100 LLaMA-2-7B == MI300X LLaMA-2-7B
MI250 LLaMA-3-8B

2

& 10000
[=
53 5000
e

é 2 2000
= E" 1000
22 500
‘g," 300
2

= 100

® 8 SN40L Sambaflow 4 1Gaudi2 DS

LLaMA-3-8B: Comparison Across Accelerators
for Input & Output Length 1024 (fp16)

1 16 32 64
Batch Size
#Devices Hardware Framework
+ 1 MI250 vLLM

m 1 GH200 TRT-LLM & 1A100 TRT-LLM ¥ 1 MI300X vLLM
® 1 H100 TRT-LLM

https://github.com/argonne-Icf/LLM-Inference-Bench

Argonne &

NATIONAL LABORATORY

Performance Dashboard

Configuration JEySTHTINRS

LLM Inference Bench Dashboard
LLaMA-3-8B: Comparison Across Accelerators for Input & Output Length 1024 (fp16)

Take an Introduction Tour

Selectors +
Filters + 6.0k-
Options 3 | -
Q
8 5.0k
§
-]
&
o 4.0k
=)
F
£ 3.0k $
= 1
ap /
=2 /
S 2.0k | e
o R
5
1.0k
=1
00— . ,
1 16 32 64 128
Batch Size
«A100 «H100 «PVC «MI250
«GH200 ¢« AMD MI300X GPU

Instructions

* Configuration: Use the configuration dropdown to load a different configuration te plot.

38 Argonne Leadership Computing Facility

https://argonne-Icf.github.io/LLM-Inference-Bench/

Argonne &

NATIONAL LABORATORY

Hugging Face Inference -

trénsformers i rt AutoTokeni

batch_encode(prompts, tokenizer, prompt_le
input_tokens = tokenizer.batch_encode_plus(prompts, return_tensors="pt", padding="max_lengtt x_length=prompt_len)
input_tokens:
is_tensor(input_tokens[t]):
input_tokens[t] = input_tokens[t].to(torch.cuda.current_device())
1 input_tokens

generate_prompt(model, tokenizer, prompts):

input_tokens = batch_encode(prompts, token r)

generate_kwargs = (max_new_tokens=64, do_sample=

output_ids = model.generate(**input_tokens, **generate_kwargs)
outputs = tokeni .batch_decode(output_ids, skip_special tokens=
re outputs

if _ name__]
model_name = "meta-llama a-L1
model = AutoModelForCausallM.from_pretrained(model_name, torch_dtype
model.seqlen = 2048
tokenizer = AutoTokenizer.from_pretrained(model_nam
tokenizer.pad_token = tokenizer.eos_token

prompts

start_time = .perf_counter()

output = generate_prompt(model, tokeni » prompts=prompts)
end_tim perf_counter()

latenc end_time - start_time

print(f"HuggingFace Generati Latency latency}"”)
print(output)

39 Argonne Leadership Computing Facility Argonne &

VLLM Inference f LLM

1lm = LLM(model=args.model,
speculative model=args.speculative model,
num_speculative_ tokens=args.num_speculative tokens,
speculative _draft_tensor_parallel size=args.speculative draft_tensor_parallel size,
tokenizer=args.tokenizer,
quantization=args.quantization,
tensor_parallel size=args.tensor_parallel size,
pipeline_parallel size=args.pipeline_parallel size,
trust_remote_code=args.trust_remote_code,
dtype=args.dtype,
max_model len=args.max_model len,
enforce_eager=args.enforce_eager,
kv_cache_dtype=args.kv_cache_dtype,
quantization_param path=args.quantization param path,

device=args.device,
enable_chunked_prefill=args.enable_chunked prefill,
download_dir=args.download_dir,
block_size=args.block_size,

gpu_memory utilization=args.gpu memory utilization,
enable_prefix_caching=args.enable prefix caching,

https://github.com/argonne-Icf/ALCF _Hands _on_HPC_Workshop/tree/master/InferenceOptimizations

40 Argonne Leadership Computing Facility Argonne &

Future of LLMs — Multimodal Models

The capital of United Kingdom is London. There are five red apples.
? Large Language Model
Large Language Model 1
Image Tokens Text Tokens

T Text Tokens DDDD D l:”j“D D

Linear PrLOJectlon : Tokenizer
1 |)
; Vision
Tokenizer e

| = : ; How many red

T . _ Vision E apples are in the
i Transformer : picture?

What is the Capital of London?

Argonne Leadership Computing Facility Argonne &

Thanks

e Siddhisanket Raskar, ALCF

* Bharat Kale , ALCF

e Farah Ferdaus, MCS

* Aditya Tanikanti, ALCF

e Ken Raffenetti, MCS

* Valerie Taylor, MCS

 Murali Emani, ALCF

* Venkatram Vishwanath, ALCF

42 Argonne Leadership Computing Facility Argonne &

43

Argonne Leadership Computing Facility

Any Questions?

Argonne &

U.S. DEPARTMENT OF

'ENERGY

Argonne

NATIONAL LABORATORY

LLM Inference Without KV Cache - Time Step 2

Query States Key States Atgn Weights
> 17
S
> O
¥ i
X 2
(V]
N +
: * 5 5
w —'
- - — g
A . .
_7 Sqlen+2 Sqlen+2
Head Dim *
e_foc e
X = =
1 1 T
o~ 1|
+ = ~ —
c
S c
o g
n o
CI 1T 1T ?
Head Dim Head Dim
Value States Attn Output

45 Argonne Leadership Computing Facility

Argonne &

LLM Inference With KV Cache - Time Step 2

Query States Key States Attn Weights
&
S x RS
L4 e
W e B
* = b
e Cache = — |
QJ —
Head Dim T Sqlen+2 =
Sqglen+2 *
O
g
N
+
s Cache
= Head Dim
w
Head Dim
Value States Attn Output

46 Argonne Leadership Computing Facility Argonne &

LLM Inference - Time Step 0 - Prefill

Query States Key States Attn Weights
> |/
o S
e i4
X ,&2\"’
£ G
g 3% 5 3=z
g 2 8 2
1 T 1
Head Dim 0 Sq Len 0
*
%*&b
Key Tensors in Attention |
1) Query States S 3 —
2) Key States = 5
3) Attn Weights ? 1
4) Value States .0 Head Dim O
5) Attn Output Head Dim
Value States Attn Output

47 Argonne Leadership Computing Facility Argonne &

