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Growth of computer performance

An era without 
Dennad’s scaling along 
with reduced Moore’s 

law and Amdahl’s law is 
in full effect. 

Motivation
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Motivation

• Charles E. Leiserson et al. ,There’s plenty of room at the Top: What will drive computer performance after Moore’s law?. Science368, eaam9744(2020 ). DOI:10.1126/science.aam9744

• John L. Hennessy and David A. Patterson. 2019. A new golden age for computer architecture. Commun. ACM 62, 2 (February 2019), 48–60. https://doi.org/10.1145/3282307

Better Software and algorithms 

Domain Specific Architectures 

and Languages

4



Argonne Leadership Computing Facility5

ALCF AI Testbed

• Infrastructure of next-generation 
machines with AI hardware accelerators

• Provide a platform to evaluate usability 
and performance of AI4S applications

• Understand how to integrate AI systems 
with supercomputers to accelerate 
science

Cerebras CS-2 SambaNova DataScale 
SN30

Graphcore 
Bow Pod64

GroqRackHabana 
Gaudi1

https://www.alcf.anl.gov/alcf-ai-testbed
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• Cerebras: 2 CS-2 nodes, each with 850,000 
Cores, compute-intensive models

• SambaNova: DataScale SN30 8 nodes 
(8 SN30 RDUs per node) - 1TB mem per 
device, models with large memory footprint 

• Graphcore: Bow Pod64 4 nodes 
(16 IPUs per node) - MIMD, irregular 
workloads such as graph neural networks

• GroqRack: 8 nodes, 8 GroqNodes per node - 
inference at batch 1

• Habana Gaudi1:  2 nodes, 8 cards per node - 
On-chip integration of RDMA over Converged 
Ethernet (RoCE2), scale-out efficiency

Cerebras CS-2 SambaNova DataScale 
SN30

Graphcore 
Bow Pod64

GroqRackHabana 
Gaudi1

ALCF AI Testbed
https://www.alcf.anl.gov/alcf-ai-testbed
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Von Neumann vs spatial architectures

➢ Limitations of Traditional Architectures

➢ Heavy data movement  leads to Increased 

Energy Cost in GPUs

➢ Rise of domain-specific dataflow inspired 

architectures

7
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➢ Program is represented as a graph 

➢ This program graph is mapped on the architecture 
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Cerebras CS2

SambaNova 

Cardinal 

SN30

Groq 

GroqRack

GraphCore 

GC200 IPU

Habana

Gaudi1
NVIDIA A100

Compute Units 850,000 Cores 640 PCUs 5120 vector ALUs 1472 IPUs
8 TPC + GEMM 

engine

6912 Cuda 

Cores

On-Chip 

Memory

40 GB L1, 1TB+ 

MemoryX

>300MB L1

1TB
230MB L1 900MB L1

24 MB L1

32GB

192KB L1

40MB L2

40-80GB

Process 7nm 7nm 7 nm 7nm 7nm 7nm

System Size

2 Nodes 

including 

Memory-X and 

Swarm-X

8 nodes (8 

cards per node)

9 nodes 

(8 cards per 

node)

4 nodes 

(16 cards per 

node)

2 nodes

(8 cards per 

node)

Several systems

Estimated 

Performance of 

a card (TFlops)

>5780 (FP16) >660 (BF16)
>250 (FP16)

>1000 (INT8)
>250 (FP16) >150 (FP16)

312 (FP16), 156 

(FP32)

Software Stack 

Support

Tensorflow, 

Pytorch

SambaFlow, 

Pytorch
GroqAPI, ONNX

Tensorflow, 

Pytorch, PopArt

Synapse AI, 

TensorFlow and 

PyTorch

Tensorflow, 

Pytorch, etc

Interconnect Ethernet-based Ethernet-based RealScale 
TM

IPU Link Ethernet-based NVLink
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Director’s Discretionary (DD) awards 

support various project objectives from 

scaling code to preparing for future 

computing competition to production 

scientific computing in support of strategic 

partnerships.

Allocation Request Form

Getting Started on ALCF AI Testbed:
 
Apply for a Director’s Discretionary (DD) 
Allocation Award

AI Testbed User Guide

Cerebras CS-2, 
SambaNova Datascale SN30, 
GroqRack and 
Graphcore Bow Pod64 
are available for allocations 

 
Director’s Discretionary (DD) 

Allocation Award

https://www.alcf.anl.gov/science/directors-discretionary-allocation-program
https://www.alcf.anl.gov/alcf-ai-testbed
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Recent Publications

• LLM-Inference-Bench: Inference Benchmarking of Large Language Models on AI Accelerators
Krishna Teja Chitty-Venkata, Siddhisanket Raskar, Bharat Kale, Farah Ferdaus, Aditya Tanikanti, Ken Raffenetti, Valerie Taylor, Murali 
Emani, Venkatram Vishwanath, "LLM-Inference-Bench: Inference Benchmarking of Large Language Models on AI Accelerators," 2024 
IEEE/ACM International Workshop on Performance Modeling, Benchmarking and Simulation of High-Performance Computer Systems 
(PMBS), Atlanta, GA, USA, 2024.

• Toward a Holistic Performance Evaluation of Large Language Models Across Diverse AI Accelerators
Murali Emani, Sam Foreman, Varuni Sastry, Zhen Xie, William Arnold, Rajeev Thakur, Venkatram Vishwanath, Michael E Papka, Sanjif 
Shanmugavelu, Darshan Gandhi, Hengyu Zhao, Dun Ma, Kiran Ranganath, Rick Weisner, Jiunn-yeu Chen, Yuting Yang, Natalia Vassilieva, 
Bin C Zhang, Sylvia Howland, Alexander Tsyplikhin. 2024 IEEE International Parallel and Distributed Processing Symposium Workshops 
(IPDPSW)

• GenSLMs: Genome-scale language models reveal SARS-CoV-2 evolutionary dynamics 
Maxim Zvyagin, Alexander Brace, Kyle Hippe, Yuntian Deng, Bin Zhang, Cindy Orozco Bohorquez, Austin Clyde, Bharat Kale, Danilo Perez 
Rivera, Heng Ma, Carla M. Mann, Michael Irvin, J. Gregory Pauloski, Logan Ward,  Valerie Hayot, Murali Emani, Sam Foreman, 
Zhen Xie, Diangen Lin, Maulik Shukla, Weili Nie, Josh Romero, Christian Dallago, Arash Vahdat, Chaowei Xiao, Thomas Gibbs, Ian Foster,                
James J. Davis, Michael E. Papka, Thomas Brettin, Rick Stevens, Anima Anandkumar, Venkatram Vishwanath, Arvind Ramanathan       
** Winner of the ACM Gordon Bell Special Prize for High Performance Computing-Based COVID-19 Research, 2022, 

  DOI:  https://doi.org/10.1101/2022.10.10.511571

• A Comprehensive Evaluation of Novel AI Accelerators for Deep Learning Workloads
Murali Emani, Zhen Xie, Sid Raskar, Varuni Sastry, William Arnold, Bruce Wilson, Rajeev Thakur, Venkatram Vishwanath, Michael E Papka, 
Cindy Orozco Bohorquez, Rick Weisner, Karen Li, Yongning Sheng, Yun Du, Jian Zhang, Alexander Tsyplikhin, Gurdaman Khaira, Jeremy 
Fowers, Ramakrishnan Sivakumar, Victoria Godsoe, Adrian Macias, Chetan Tekur, Matthew Boyd, 13th IEEE International Workshop on 
Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS) at SC 2022
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Recent Publications
• Enabling real-time adaptation of machine learning models at x-ray Free Electron Laser facilities with high-speed training optimized 

computational hardware                            
Petro Junior Milan, Hongqian Rong, Craig Michaud, Naoufal Layad, Zhengchun Liu, Ryan Coffee, Frontiers in Physics                                         
DOI: https://doi.org/10.3389/fphy.2022.958120

• Intelligent Resolution: Integrating Cryo-EM with AI-driven Multi-resolution Simulations to Observe the SARS-CoV-2 Replication-
Transcription Machinery in Action* 
Anda Trifan, Defne Gorgun, Zongyi Li, Alexander Brace, Maxim Zvyagin, Heng Ma, Austin Clyde, David Clark, Michael Salim, David Har
dy,Tom Burnley, Lei Huang, John McCalpin, Murali Emani, Hyenseung Yoo, Junqi Yin, Aristeidis Tsaris, Vishal Subbiah, Tanveer Raza,J
essica Liu, Noah Trebesch, Geoffrey Wells, Venkatesh Mysore, Thomas Gibbs, James Phillips, S.Chakra Chennubhotla, Ian Foster, Rick
Stevens, Anima Anandkumar, Venkatram Vishwanath, John E. Stone, Emad Tajkhorshid, Sarah A. Harris, Arvind Ramanathan, 
International Journal of High-Performance Computing (IJHPC’22) DOI: https://doi.org/10.1101/2021.10.09.463779

• Stream-AI-MD: Streaming AI-driven Adaptive Molecular Simulations for Heterogeneous Computing Platforms 
Alexander Brace, Michael Salim, Vishal Subbiah, Heng Ma, Murali Emani, Anda Trifa, Austin R. Clyde, Corey Adams, Thomas Uram, 
Hyunseung Yoo,  Andrew Hock, Jessica Liu, Venkatram Vishwanath, and Arvind Ramanathan. 2021 Proceedings of the Platform for 
Advanced Scientific Computing Conference (PASC’21). DOI: https://doi.org/10.1145/3468267.3470578

• Bridging Data Center AI Systems with Edge Computing for Actionable Information Retrieval
Zhengchun Liu, Ahsan Ali, Peter Kenesei, Antonino Miceli, Hemant Sharma, Nicholas Schwarz, Dennis Trujillo, Hyunseung Yoo, Ryan 
Coffee, Naoufal Layad, Jana Thayer, Ryan Herbst, Chunhong Yoon, and Ian Foster, 3rd Annual workshop on Extreme-scale Event-in-
the-loop computing (XLOOP), 2021

• Accelerating Scientific Applications With SambaNova Reconfigurable Dataflow Architecture
Murali Emani, Venkatram Vishwanath, Corey Adams, Michael E. Papka, Rick Stevens, Laura Florescu, Sumti Jairath, William Liu, Tejas 
Nama, Arvind Sujeeth, IEEE Computing in Science & Engineering 2021 DOI: 10.1109/MCSE.2021.3057203.

* Fiinalist in the ACM Gordon Bell Special Prize for High Performance Computing-Based COVID-19 Research, 2021
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• 850,000 cores optimized for sparse linear algebra

• 46,225 mm2 silicon

• 2.6 trillion transistors, 7nm process technology

• 40 gigabytes of on-chip memory

• 20 PByte/s memory bandwidth 220 Pbit/s

fabric bandwidth
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WSE-2 Architecture Basics
The WSE appears as a logical 2D array of 

individually programmable Processing Elements

Flexible compute

• 850,000 general purpose CPUs

• 16- and 32-bit native FP and integer data types

• Dataflow programming: Tasks are activated or 
triggered by the arrival of data packets

Flexible communication

• Programmable router

• Static or dynamic routes (colors)
• Data packets (wavelets) passed between PEs

• 1 cycle for PE-to-PE communication

Fast memory

• 40GB on-chip SRAM
• Data and instructions

• 1 cycle read/write

Tensors Tensors

…

…

…

…

…

… … … … … …

Fabric router

Processor

Memory

Offramp Onramp

PE
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Wafer-Scale Cluster

Image Courtesy: Cerebras 

Input preprocessing servers stream training data

MemoryX - Stores and streams model’s weights

SwarmX – weight broadcasts and gradient across 
multiple CS2s

Compilation (maps graph to kernels) Execution 
(training)
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Integration with PyTorch

• Models defined in framework + Cerebras API

• Optimally maps from PyTorch to high performance kernels

• Uses polyhedral code-generation or hand-written kernels

• Compiler using industry standard MLIR framework

• Cerebras is an active contributor to the MLIR open- source 
community

• User does not worry about distributed compute or 
parallelism

Lowering from Model to Wafer

Reference Models

Model script

Ops Layer API

Cerebras Graph Compiler

Kernel library Kernel autogen

Placement & routing engine

CS-2

© 2023 Cerebras Systems Inc. All Rights Reserved 47
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cstorch Software Stack

Cerebras torch 
“device”

PyTorch

cstorch API

LazyTensorCore

LTC MLIR
Plugin

Runtime 
Executor

Torch Dialect

Cerebras 
MLIR Dialect

Wafer-Scale Cluster

Runtime Executor

• cstorch API mirrors torch API

• Helps with single device abstraction

• Tensor Ops traced through LazyTensorCore

• Graph-by-execution with lazy evaluation

• Also powers Google’s xla/tpu device

• MLIR translation from LTC provided by torch-mlir

• Hardware focused compiler ecosystem for torch

• Cerebras MLIR stack handles cluster optimizations

• Tensors get transferred to cluster as needed

• Initial weights sent before first step

• Inputs sent each step from custom data executor

• Execution driven asynchronously by cluster
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CS Torch Hands-On

Link to Hands-On Session Material

mailto:https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop/tree/master/aiTestbeds/Cerebras/PyTorch
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Cerebras SDK

A general-purpose parallel-computing platform and API allowing software developers to write custom 
programs (“kernels”) for Cerebras systems.

Language
Host APIs with Python

CSL: Cerebras Software Language

Libraries Optimized primitives

Tools Simulator

Debugger

Visualization
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Device: CSL

• Target software simulator or CS-2

• CSL programs run on groups of cores on the WSE, 
specified by programmer

• Executes dataflow programs

From a Programmer’s Perspective

Host CPU(s): Python

• Loads program onto simulator or CS-2 system

• Streams in/out data from one or more workers

• Reads/writes device memory 

Device Read/Write

Memory I/O + 

Data Streams
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• Types

• Functions

• Control structures

• Structs/Unions/Enums

• Comptime

• Builtins

• Module system

• Params

• Tasks

• Data Structure Descriptors

• Layout specification

CSL: Language Basics

Straight from C 
(via Zig)

CSL specific

Used for writing 

device kernel code

Familiar to 

C/C++/HPC 

programmers
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Familiar Features

Types
• Syntax similar to other modern languages – Go, Swift, Scala, Rust

• Float (f16, f32), signed (i16, i32), unsigned (u16, u32), boolean (bool)

Functions
• Zig-style syntax

• Pass by value or reference and inlining automatically handled

Control Structures
• Traditional control flow: if, for, while, with zig and C style syntax

conditionals
while loop while loop with iterator range for loop

(also provides C-style for) 
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Comptime 
• From Zig, block of code where all evaluation occurs at compile time

• Useful for frontloading computation to avoid runtime overhead

Params
• Like #define, but strongly typed

• Have to be “bound” completely during compilation

Modules
• Any CSL source code file is a “Module,” importable into other modules

• Imported modules acts as an instance of a unique struct type

• Multiple imports of the same module allowed

Quality of Life Features

m1.csl

p1.csl
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Builtins 
• Similar to function calls with @ in front of function name

• Language extensions without special syntax

• Used for invoking special compiler functionality

Tasks
• Core building blocks of CSL

• Special functions used to implement dataflow programs

• Triggered by incoming wavelets on a specific color

Performance Features

var
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SDK usage and impact
Over the past year, SDK has evolved from a closed tool 

requiring NDA access to a public platform for Wafer-Scale 

Computing. We’re supporting more research and 

publications than ever.
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CS SDK Hands-On

Link to Hands-On Session Material

mailto:https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop/tree/master/aiTestbeds/Cerebras/SDK
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Graphcore Intelligence Processing Unit (IPU)

Slide Courtesy: Graphcore 
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Slide Courtesy: Graphcore 
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POPLAR® SDK

POPVISION TOOLS

DEVELOPER ECOSYSTEM

GRAPH ENGINE

GC DEVICE ACCESS LAYER

PCIe DRIVERIPUOF DRIVER

GRAPH COMPILER

POPLIBS GCL POPLAR

POPLAR®

DRIVERS

FW BACKENDS

FRAMEWORKS

PARTITIONER POPIR POPIT

INFERENCE DEPLOYMENT 

TOOLKIT
FRONTENDS

GRAPH ANALYZER

SYSTEM ANALYZER

DEBUGGER

DEVELOPMENT ENVIRONMENT

TUTORIALS

CODE EXAMPLES

DOCUMENTATION

VIDEOS

NATIVE IPU CODERS PROGRAM

APPS PORTFOLIO

ML APPLICATIONS

NLP/TRANSFORMERS

IMAGE CLASSIFICATION/CNNS

OBJECT DETECTION

LARGE MODELS

MLPERF

CONDITIONAL SPARSITY

GNNS

JUPYTER NOTEBOOKS

SYSTEM SOFTWARE

POPLAR

V-IPU

SYSTEM MONITORING

JOB DEPLOYMENT

K8S SLURM

PROMETHEUS

GRAFANA

XLA POPART+ POPDIST

GRAPHCORE SOFTWARE

HALOONNX
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Bulk Synchronous Parallel (BSP)

• The IPU uses the bulk-synchronous parallel 
(BSP) model of execution where the execution 
of a task is split into steps. 

• Each step consists of the following phases:  

⏤ local tile compute, 

⏤ global cross-tile synchronization,

⏤  data exchange

Additional Details

34

https://confluence.cels.anl.gov/display/AIFHPC/Graphcore
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Graphcore PyTorch Hands-On

Link to Hands-On Session Material

mailto:https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop/tree/master/aiTestbeds/Graphcore/PyTorch
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Poplar software stack

General purpose, extensible Parallel programming framework which is 
close to metal and targets the IPU 

36
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Programming model

Vertices

• vertices are compute tasks, A vertex is a specific piece of work to be carried out. 

• A vertex runs on a single tile. Many vertices are needed to fully utilize the device 

• The edges determine which variable elements are processed by the vertex. A 

vertex can connect to a single element or a range of elements. 

• Each vertex is associated with a codelet. The piece of code that a vertex runs is 
known as a codelet

Computational Graph

• Data (variables in the graph) 

• Compute tasks (vertices) 

• Edges that connect them 

• The vertices from the multiple compute sets 

in a program form the computational graph of 
the program

Variables 

• Data is stored in the graph in fixed size multi-dimensional tensors. 

• Variables can be distributed over multiple tiles

37
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THE POPLAR GRAPH

0.3 3.22 44.5 3.13 6.49

24.3 9.2 0.01 0.23 93.1

0.22 13.2 3.2 5.67 55.3

5.6 99.8 7.22 8.66 22.1

0.3 3.22 44.5

24.3 9.2 0.01

0.3 3.22 44.5 3.13 6.49

0.3 3.22 44.5 3.13

24.3 9.2 0.01 0.23

0.22 13.2 3.2 5.67

The graph is made up of:

• Data (variables in the graph)

• Compute tasks (vertices)

• Edges that connect them

39
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0.3 3.22 44.5 3.13 6.49

124.3 9.2 0.01 0.23 953.

0.22 123.2 3.2 5.67 55.

5.6 99.8 7.22 8.66 22.1

0.3 3.22 44.5 3.13 6.49

24.3 9.2 0.01 0.23 95

0.22 123.2 3.2 5.67 55.

5.6 99.8 7.22 8.66 22.1

0.3 3.22 44.5 3.13 6.49
3.1

3
24.3 9.2 0.01 0.23 953.1

3

0.22 123.2 3.2 5.67 55.3

5.6 99.8 7.22 8.66 22.1

3-d tensor (3 x 4 x 5)

0.3 3.22 44.5 3.13 6.49

1-d tensor (5)

0.3 3.22

24.3 9.

40

2

2-d tensor (2 x 2)

Data is stored in the graph in fixed size multi-dimensional tensors.

VARIABLES
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0.3

3.1

3

44.

5

3.2

2

6.4

9

24.

3

0.2

3

0.

01

9.2

95

3.1

0.2

2

5.6

7

3.2

123

.2

55.

3

5.6

8.6

6

7.2

2

99.

8

22.

1

0.3 3.22 44.5

0.01

3.13

0.23

6.49

93.124.3 9.2

0.22 13.2 3.2 5.67 55.3

5.6 99.8 7.22 8.66 22.1

VARIABLES

Variables can be

41

distributed over

multiple tiles
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COMPUTE

SETS

0.3 3.22 44.5 3.13 6.49

24.3 9.2 0.01 0.23 93.1

0.22 13.2 3.2 5.67 55.3

5.6 99.8 7.22 8.66 22.1

0.3 3.22 44.5

24.3 9.2 0.01

0.3 3.22 44.5 3.13 6.49

0.3 3.22 44.5 3.13

24.3 9.2 0.01 0.23

0.22 13.2 3.2 5.67

Compute sets specify

47

sets of vertices to 

execute in parallel

Poplar verifies the 

compute set is free of

data races
Compute Set A

Compute Set B

Compute Set C
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programming model

Compute Sets 

• A compute set is a highly parallel piece of 

compute. 

• Each compute set consists of 

many vertices that are compute tasks 

Steps: 
• Exchange Transfer inputs, 

• Compute Run vertices in Parallel

• Exchange Transfer outputs

• Exchange is required when a vertex in a 

compute set needs to read or write data 

which is stored on another tile's memory.

42
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#inc lude <poplar/Engine.hpp>

using namespace poplar ;

using namespace poplar::program;

…

Graph gr aph(t arget );  

graph.addCodelets(“my-codelets .cpp” );

Program prog1, prog2;

constructMyGraph(graph, &prog1, &prog2);

Engine eng(dev ice, graph, {prog1, prog2}) ;

…

eng.run(0);

THE HOST

PROGRAMHost programs use 

the poplar library.

Codelets are 

loaded into 

the graph.

Control 

programs are 

built up out of 

instances of 

the Program 

class.

The Engine class 

represents a fully 

compiled program 

ready to run on 

hardware.

The Graph class is 

used to build up 

the computation 

graph.

4
3
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CODELET DEFINITIONS

c lass AdderVertex :  pub l ic Vertex {  

p ub l ic :
Input< f loat> x ;

Input< f loat> y ;  

Output<float> z ;  

f l o a t b ia s ;

bool compute() {

*z = x + y + bia s ;  

r e tur n t r ue ;
}

}

Each codelet is 

defined as a C++ class 
that inherits from the 

Vertex class.

The fields of the 

vertex specify its 
inputs, outputs and 

internal data.

The compute method 

specifies the vertex 
execution behaviour.

4
4
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BUILDING THE COMPUTE GRAPH

0.3 3.1344.53.22

24.3 0.239.2

6.49

953.1

0.22

0.01

3.2123.2 5.67 55.3

5.6 7.2299.8 8.66 22.1

9.3 2.95 103.2 0.001

g

t1

t2

Graph g(device); 

g.addCodelets("codelets.cpp" );

Tensor t 1 = g.addVariable(FLOAT, {4 , 5 } ) ;  

Tensor t 2 = g.addVariable(FLOAT, {4 } ) ;

ComputeSet cs = g.addComputeSet(“myComputeSet”)

VertexRef v1 = g.addVertex(cs, “AdderVertex”);  

VertexRef v2 = g.addVertex(cs, “AdderVertex”);

g .connect (t 1[ 1 ][ 1] , v1 [ " x " ] ) ;  
g .connec t( t1 . sl i ce ( {3 , 1 } , { 4 , 3 } ) , v1 [ " y " ] ) ;

g .connect( t2 [0 ], v1 [ " z " ] ) ;

cs

v1 v2g .connect (t 1[ 0 ][ 3] , v2 [ " x " ] ) ;  

g .connec t( t1 . sl i ce ( {2 , 2 } , { 3 , 4 } ) , v2 [ " y " ] ) ;  
g .connect( t2 [3 ], v2 [ " z " ] ) ;

g. se tTi leMapp ing(t 1.s l i ce( {0 , 0 } , { 4 , 2 } ) , 0 ) ;

g. se tTi leMapp ing(t 1.s l i ce( {0 , 2 } , { 4 , 5 } ) , 1 ) ;
g.setTi leMapp ing(t2, 2 ) ;

g.setTi leMapping(v1, 0 ) ;

g.setTi leMapping(v2, 1 ) ;
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CREATING CONTROL PROGRAMS

Graph g(device); 
g.addCodelets("codelets.cpp" );

…
auto prog = Sequence();

prog.add(Execute(cs1));
prog.add(Execute(cs2));

0.3 3.1344.53.22 6.49

24.3 0.230.019.2 953.1

0.22 5.673.2123.2 55.3

5.6 8.667.2299.8 22.1

9.3 0.001103.22.95

t1

t2

cs1 9.3 0.001103.22.95 t3

cs2

Execute(cs1); 

Execute(cs2);

prog
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CREATING THE ENGINE

Graph g(device); 
g.addCodelets("codelets.cpp" );

…
auto prog = Sequence();

prog.add(Execute(cs1));
prog.add(Execute(cs2));

Engine eng(device, graph, {p rog} );

0.3 3.1344.53.22 6.49

24.3 0.230.019.2 953.1

0.22 5.673.2123.2 55.3

5.6 8.667.2299.8 22.1

9.3 0.001103.22.95

t1

t2

cs1 9.3 0.001103.22.95 t3

cs2

Execute(cs1); 

Execute(cs2);

eng

prog



Argonne Leadership Computing Facility48

Profiling: popvision tools

PopVision 

System 

Analyzer

PopVision 

Graph 

Analyzer

48
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Graphcore Poplar Hands-On

Link to Hands-On Session Material

mailto:https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop/tree/master/aiTestbeds/Graphcore/Poplar
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SambaNova Cardinal SN30 RDU

7nm TSMC, 86B transistors

102 km of wire

640 MB on-chip, 
1,024 GB external

688 TFLOPS (bf16)

RDU-ConnectTM

Cardinal SN30TM

Reconfigurable Dataflow 
UnitTM

SILICON
RDU

SOFTWARE
SambaFlow

SYSTEMS
DataScale®

as-a-SERVICE
Pre-trained 
Foundation Models
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Cardinal SN30: Tile

51

Software-Driven Architecture
Tiled architecture with reconfigurable SIMD pipelines, distributed scratchpads, and programmed switches

Coalescing 
Unit

Coalescing
Unit

AG Address 
Generation 
Unit

S Switch PMU Pattern 
Memory 
Unit

PCU
Pattern 
Compute 
Unit

S SSS

S SSS

S SSS

S SSS

PMU

PMU

PMU

PMUPMU

PCU

PCU PCU

PCU

AG

AG

AG

AG

Coalescing 
Unit

Coalescing 
Unit

TILE 5 TILE 6

TILE 7 TILE 8

Top-Level Interconnect

DDR PCIe

DRAM

(TBs)

Virtual Memory Manager

Host

Scale-Out

TILE 0 TILE 1

TILE 2 TILE 3
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The old way:  kernel-by-kernel
Bottlenecked by memory bandwidth 

and host overhead

The Dataflow way: Spatial
Eliminates memory traffic and overhead

Simple 

Convolution 
Graph

Dataflow Architectures
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SambaNova DataScale SN30-8 System

• 8 x Cardinal SN30 Reconfigurable Dataflow Unit

• 8 TB total memory (using 64 x 128 GB DDR4 DIMMs)

• 6 x 3.8 TB  NVMe (22.8 TB total)

• PCIe Gen4 x16

• Host module

Image Courtesy: SambaNova 
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Samba PyTorchAPI

RDUs

Runtime

CPU

Kernel Compiler

Kernel Library Samba Runtime

Graph Compiler

Run PathCompilation Path

PEF

Samba Compilation Flow

5
4

Copyright © 2024 Sambanova Systems

● Samba
+ SambaNova PyTorch 

compilation & run APIs

● Graph compiler
+ High-level ML graph 

transformation & optimizations

● Kernel compiler
+ Low-level RDU operator kernel 

transformation & optimizations

● Kernel library
+ RDU operator 

implementations
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Sambaflow Hands-On

Link to Hands-On Session Material

mailto:https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop/tree/master/aiTestbeds/Sambanova
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Networking
480 GB/s bandwidth

Extensible ne twork scalabil ity 

Mult iple topologies

Data Switch
Shift, Transpose, Permuter for

improved data movement and 

data reshapes

Instruction Control
Mult iple instruct ion queues for

instruct ion parallel ism

SRAM Memory
Massive concurrency

80 TB/s of BW 

230MB capacity 

Stride insensitive

Groq TruePoint Matrix

4x Engines 

750 TOP/s int8

188 TFLOP/s fp16

320x320 fused dot product

Programmable 

Vector Units
5,120 Vector ALUs for

h igh performance

Groq LPU Overview

© 2024 Groq, Inc. | Groq AI Workshop Groq Public  56
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Groq LPU Building Blocks

Bui ld different types of specialized SIMD units

© 2024 Groq, Inc. | Groq AI Workshop Groq Public  57

MXM
Matrix-Vector / 

Matrix-Matrix Multiply

VXM
Vector-Vector 

Operations

SXM
Data Reshapes

MEM
On-chip SRAM
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Architecture Empowering Software

Software-controlled memory

No dynamic hardware caching

■ Compiler aware of all data locations 
at any given point in time

Flat memory hierarchy 
(no L1, L2, L3, etc)

■ Memory exposed to software as a 

set of physical banks that are 
directly addressed

Large on-chip memory capacity (220 
MiB) at very high-bandwidth (80 TBps)

■ Achieves high compute efficiency 

even at low operational intensity

S
X

M

M
X

M MEM
[88 SRAM banks]

V
X

M MEM
[88 SRAM banks]

S
X

M

M
X

M

Groq Public  61
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GroqChip

The pu rpo se-bui lt 

Language Processing 

Uni t Inferenc e Engine

GroqNode
GroqCard

GroqRack

Del l Servers

☰ EXCEPTIONAL.

a t sequential processing. The LPU Inference Engine i s  

designed to scale and i s more po wer -eff i cien t, with greater 

performance, than a GPU f or AI appli cations l i ke LLMs.

© 2024 Groq, Inc. | Groq AI Workshop Groq Public  62
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GroqWare

Suite DIVERSE SUITE OF 

DEVELOPMENT TOOLS

Out-of-Box
Groq Compiler provides

out-of-box support for standard 
Deep Learning models

Productivity

Tools

+
GroqView Profiler provides 

visualization of the chip’s compute 
and memory usage at compile time

GroqFlow Tool Chain enables a 

single line of Pytorch or TensorFlow 
code to import and transform 
models through a fully automated 

tool chain to run on Groq hardware

Groq Assembler

Groq Runt ime

Groq Hardware
(GroqCard, GroqNode, GroqRack)

G
ro

q
F

lo
w

Groq Compiler
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General Groq LLM Development Flow

Modify PyTorch Model

Export ONNX Model

Convert ONNX Model 

from fp32 to fp8/fp16

Decoder Partition

Groq Compile!

Multi-node/Multi-rack 
Host-Code Invocation
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Groq Hands-On

Link to Hands-On Session Material

mailto:https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop/tree/master/aiTestbeds/Groq
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Thank You

• This research was funded in part and used resources of the Argonne Leadership Computing 
Facility (ALCF), a DOE Office of Science User Facility supported under Contract DE-AC02-
06CH11357.

• Murali Emani, Varuni Sastry, William Arnold, Krishna Teja Chitty-Venkata, Venkatram 
Vishwanath

• Our current AI testbed system vendors – Cerebras, Graphcore, Groq, Intel Habana and 
SambaNova. 

• Many slides are courtesy of AI Testbed vendors. 

Please reach out for further details
Sid Raskar, sraskar@anl.gov 

mailto:sraskar@anl.gov
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