October 29-31, 2024

ALCF Hands-on HPC Workshop

OCTOBER 30TH, 2024

AI Testbeds at ALCF

SIDDHISANKET (SID) RASKAR sraskar@anl.gov Argonne National Laboratory

Contributors: Murali Emani, Varuni Sastry, Bill Arnold, Krishna Teja Chitty-Venkata, Venkat Vishwanath

 Argonne National Laboratory is a U.S. Department of Energy laborato managed by UChicago Argonne, LLC

Motivation

An era without Dennad's scaling along with reduced Moore's law and Amdahl's law is in full effect.

Growin of computer performa

Motivation

• Charles E. Leiserson et al., There's plenty of room at the Top: What will drive computer performance after Moore's law?. Science368, eaam9744(2020). DOI:10.1126/science.aam9744

• John L. Hennessy and David A. Patterson. 2019. A new golden age for computer architecture. Commun. ACM 62, 2 (February 2019), 48–60. https://doi.org/10.1145/3282307

ALCF AI Testbed

https://www.alcf.anl.gov/alcf-ai-testbed

ALCF AI Testbed

https://www.alcf.anl.gov/alcf-ai-testbed

Von Neumann vs spatial architectures

- Limitations of Traditional Architectures
- Heavy data movement leads to Increased Energy Cost in GPUs

 Rise of domain-specific dataflow inspired architectures

7

SPATIAL RECONFIGURABLE ARCHITECTURES

Workflow

- Program is represented as a graph
- > This program graph is mapped on the architecture

SPATIAL RECONFIGURABLE ARCHITECTURES

Workflow

- Program is represented as a graph
- > This program graph is mapped on the architecture

	Cerebras CS2	SambaNova Cardinal SN30	Groq GroqRack	GraphCore GC200 IPU	Habana Gaudi1	NVIDIA A100
Compute Units	850,000 Cores	640 PCUs	5120 vector ALUs	1472 IPUs	8 TPC + GEMM engine	6912 Cuda Cores
On-Chip Memory	40 GB L1, 1TB+ MemoryX	>300MB L1 1TB	230MB L1	900MB L1	24 MB L1 32GB	192KB L1 40MB L2 40-80GB
Process	7nm	7nm	7 nm	7nm	7nm	7nm
System Size	2 Nodes including Memory-X and Swarm-X	8 nodes (8 cards per node)	9 nodes (8 cards per node)	4 nodes (16 cards per node)	2 nodes (8 cards per node)	Several systems
Estimated Performance of a card (TFlops)	>5780 (FP16)	>660 (BF16)	>250 (FP16) >1000 (INT8)	>250 (FP16)	>150 (FP16)	312 (FP16), 156 (FP32)
Software Stack Support	Tensorflow, Pytorch	SambaFlow, Pytorch	GroqAPI, ONNX	Tensorflow, Pytorch, PopArt	Synapse AI, TensorFlow and PyTorch	Tensorflow, Pytorch, etc
Interconnect	Ethernet-based	Ethernet-based	RealScale [™]	IPU Link	Ethernet-based	NVLink

Director's Discretionary (DD) Allocation Award

Director's Discretionary (DD) awards support various project objectives from scaling code to preparing for future computing competition to production scientific computing in support of strategic partnerships.

Getting Started on ALCF AI Testbed:

Apply for a Director's Discretionary (DD) Allocation Award

Cerebras CS-2, SambaNova Datascale SN30, GroqRack and Graphcore Bow Pod64 are available for allocations

Allocation Request Form

AI Testbed User Guide

Recent Publications

• LLM-Inference-Bench: Inference Benchmarking of Large Language Models on AI Accelerators

Krishna Teja Chitty-Venkata, Siddhisanket Raskar, Bharat Kale, Farah Ferdaus, Aditya Tanikanti, Ken Raffenetti, Valerie Taylor, Murali Emani, Venkatram Vishwanath, "LLM-Inference-Bench: Inference Benchmarking of Large Language Models on AI Accelerators," 2024 IEEE/ACM International Workshop on Performance Modeling, Benchmarking and Simulation of High-Performance Computer Systems (PMBS), Atlanta, GA, USA, 2024.

• Toward a Holistic Performance Evaluation of Large Language Models Across Diverse AI Accelerators

Murali Emani, Sam Foreman, Varuni Sastry, Zhen Xie, William Arnold, Rajeev Thakur, Venkatram Vishwanath, Michael E Papka, Sanjif Shanmugavelu, Darshan Gandhi, Hengyu Zhao, Dun Ma, Kiran Ranganath, Rick Weisner, Jiunn-yeu Chen, Yuting Yang, Natalia Vassilieva, Bin C Zhang, Sylvia Howland, Alexander Tsyplikhin. 2024 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

• GenSLMs: Genome-scale language models reveal SARS-CoV-2 evolutionary dynamics

Maxim Zvyagin, Alexander Brace, Kyle Hippe, Yuntian Deng, Bin Zhang, Cindy Orozco Bohorquez, Austin Clyde, Bharat Kale, Danilo Perez Rivera, Heng Ma, Carla M. Mann, Michael Irvin, J. Gregory Pauloski, Logan Ward, Valerie Hayot, Murali Emani, Sam Foreman, Zhen Xie, Diangen Lin, Maulik Shukla, Weili Nie, Josh Romero, Christian Dallago, Arash Vahdat, Chaowei Xiao, Thomas Gibbs, Ian Foster, James J. Davis, Michael E. Papka, Thomas Brettin, Rick Stevens, Anima Anandkumar, Venkatram Vishwanath, Arvind Ramanathan ** *Winner of the ACM Gordon Bell Special Prize for High Performance Computing-Based COVID-19 Research, 2022,* DOI: https://doi.org/10.1101/2022.10.10.511571

A Comprehensive Evaluation of Novel AI Accelerators for Deep Learning Workloads

Murali Emani, Zhen Xie, Sid Raskar, Varuni Sastry, William Arnold, Bruce Wilson, Rajeev Thakur, Venkatram Vishwanath, Michael E Papka, Cindy Orozco Bohorquez, Rick Weisner, Karen Li, Yongning Sheng, Yun Du, Jian Zhang, Alexander Tsyplikhin, Gurdaman Khaira, Jeremy Fowers, Ramakrishnan Sivakumar, Victoria Godsoe, Adrian Macias, Chetan Tekur, Matthew Boyd, 13th IEEE International Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS) at SC 2022

Recent Publications

• Enabling real-time adaptation of machine learning models at x-ray Free Electron Laser facilities with high-speed training optimized computational hardware

Petro Junior Milan, Hongqian Rong, Craig Michaud, Naoufal Layad, Zhengchun Liu, Ryan Coffee, Frontiers in Physics DOI: https://doi.org/10.3389/fphy.2022.958120

• Intelligent Resolution: Integrating Cryo-EM with AI-driven Multi-resolution Simulations to Observe the SARS-CoV-2 Replication-Transcription Machinery in Action*

Anda Trifan, Defne Gorgun, Zongyi Li, Alexander Brace, Maxim Zvyagin, Heng Ma, Austin Clyde, David Clark, Michael Salim, David Har dy, Tom Burnley, Lei Huang, John McCalpin, Murali Emani, Hyenseung Yoo, Junqi Yin, Aristeidis Tsaris, Vishal Subbiah, Tanveer Raza, J essica Liu, Noah Trebesch, Geoffrey Wells, Venkatesh Mysore, Thomas Gibbs, James Phillips, S.Chakra Chennubhotla, Ian Foster, Rick Stevens, Anima Anandkumar, Venkatram Vishwanath, John E. Stone, Emad Tajkhorshid, Sarah A. Harris, Arvind Ramanathan, International Journal of High-Performance Computing (IJHPC'22) DOI: https://doi.org/10.1101/2021.10.09.463779

- Stream-AI-MD: Streaming AI-driven Adaptive Molecular Simulations for Heterogeneous Computing Platforms
 Alexander Brace, Michael Salim, Vishal Subbiah, Heng Ma, Murali Emani, Anda Trifa, Austin R. Clyde, Corey Adams, Thomas Uram,
 Hyunseung Yoo, Andrew Hock, Jessica Liu, Venkatram Vishwanath, and Arvind Ramanathan. 2021 Proceedings of the Platform for
 Advanced Scientific Computing Conference (PASC'21). DOI: https://doi.org/10.1145/3468267.3470578
- Bridging Data Center Al Systems with Edge Computing for Actionable Information Retrieval Zhengchun Liu, Ahsan Ali, Peter Kenesei, Antonino Miceli, Hemant Sharma, Nicholas Schwarz, Dennis Trujillo, Hyunseung Yoo, Ryan Coffee, Naoufal Layad, Jana Thayer, Ryan Herbst, Chunhong Yoon, and Ian Foster, 3rd Annual workshop on Extreme-scale Event-inthe-loop computing (XLOOP), 2021
- Accelerating Scientific Applications With SambaNova Reconfigurable Dataflow Architecture Murali Emani, Venkatram Vishwanath, Corey Adams, Michael E. Papka, Rick Stevens, Laura Florescu, Sumti Jairath, William Liu, Tejas Nama, Arvind Sujeeth, IEEE Computing in Science & Engineering 2021 DOI: 10.1109/MCSE.2021.3057203.

* Fiinalist in the ACM Gordon Bell Special Prize for High Performance Computing-Based COVID-19 Research, 2021

- 850,000 cores optimized for sparse linear algebra
- 46,225 mm² silicon
- 2.6 trillion transistors, 7nm process technology
- 40 gigabytes of on-chip memory
- 20 PByte/s memory bandwidth 220 Pbit/s

fabric bandwidth

WSE-2 Architecture Basics

The WSE appears as a logical 2D array of individually programmable Processing Elements

Flexible compute

- 850,000 general purpose CPUs
- 16- and 32-bit native FP and integer data types
- **Dataflow programming**: Tasks are activated or triggered by the arrival of data packets

Flexible communication

- Programmable router
- Static or dynamic routes (colors)
- Data packets (wavelets) passed between PEs
- 1 cycle for PE-to-PE communication

Fast memory

- 40GB on-chip SRAM
- Data and instructions
- 1 cycle read/write

Wafer-Scale Cluster

Input preprocessing servers stream training data

MemoryX - Stores and streams model's weights

SwarmX – weight broadcasts and gradient across multiple CS2s

Compilation (maps graph to kernels) Execution (training)

Cerebras CS-2 Cluster

https://www.alcf.anl.gov/alcf-ai-testbed

ALCF's CS-2 Cluster

- 2 CS-2 Appliances (each chip 46225 mm²)
- 1 Management node
- 16 Worker nodes
- 24 MemoryX nodes
- 6 SwarmX nodes

Topology of a Cerebras Wafer-Scale cluster

• 3 user login nodes

Lowering from Model to Wafer

Integration with PyTorch

- Models defined in framework + Cerebras API
- Optimally maps from PyTorch to high performance kernels
 - Uses polyhedral code-generation or hand-written kernels
- Compiler using industry standard MLIR framework
 - Cerebras is an active contributor to the MLIR open- source community
- User does not worry about distributed compute or parallelism

)
Referenc	e Models
Model	script
Ops	Layer API
Cerebras Gra	aph Compiler
Kernel library	Kernel autogen
Placement & r	outing engine
CS-2	

cstorch Software Stack

Runtime Executor

- cstorch API mirrors torch API
 - Helps with single device abstraction
- Tensor Ops traced through LazyTensorCore
 - Graph-by-execution with lazy evaluation
 - Also powers Google's xla/tpu device
- MLIR translation from LTC provided by torch-mlir
 - Hardware focused compiler ecosystem for torch
- Cerebras MLIR stack handles cluster optimizations
- Tensors get transferred to cluster as needed
 - Initial weights sent before first step
 - Inputs sent each step from custom data executor
- Execution driven asynchronously by cluster

CS Torch Hands-On

Link to Hands-On Session Material

Cerebras SDK

A general-purpose parallel-computing platform and API allowing software developers to write custom programs ("kernels") for Cerebras systems.

From a Programmer's Perspective

Host CPU(s): Python

- Loads program onto simulator or CS-2 system
- Streams in/out data from one or more workers
- Reads/writes device memory

Device: CSL

- Target software simulator or CS-2
- CSL programs run on groups of cores on the WSE, specified by programmer
- Executes dataflow programs

CSL: Language Basics

- Types
- Functions
- Control structures
- Structs/Unions/Enums
- Comptime
- Builtins
- Module system
- Params
- Tasks
- Data Structure Descriptors
- Layout specification

- Straight from C (via Zig)

- CSL specific

Used for writing device kernel code

Familiar to C/C++/HPC programmers

Familiar Features

Types

- Syntax similar to other modern languages Go, Swift, Scala, Rust
- Float (f16, f32), signed (i16, i32), unsigned (u16, u32), boolean (bool)

Functions

- Zig-style syntax
- Pass by value or reference and inlining automatically handled

Control Structures

• Traditional control flow: if, for, while, with zig and C style syntax

if (x < 10) {
 y += 5;
 y += 10;
 y += 10;
 conditionals</pre>
var x: u16 = 100;
while(x > 99) {
 ...
 while loop
 while loop
 while loop with iterator

```
var x : i16;
const y = 42;
var arr : [16, 4]f32;
var ptr : *i16;
```



```
const xs = [10]i16 { 0, 1, 2, 4 };
for (xs) |x,idx| {
    ...
}
```

range **for** loop (also provides C-style **for**)

Quality of Life Features

Comptime

- From Zig, block of code where all evaluation occurs at compile time
- Useful for frontloading computation to avoid runtime overhead

Params

- Like #define, but strongly typed
- Have to be "bound" completely during compilation

Modules

- Any CSL source code file is a "Module," importable into other modules
- Imported modules acts as an *instance* of a unique struct type
- Multiple imports of the same module allowed

<pre>const v1 = @import module("m1.csl"):</pre>	p1.csl
<pre>const v2 = @import_module("m1.csl");</pre>	
v1.incr(); v2.incr(); v2.incr();	
// v1.x == 1; v2.x == 2;	

param M : i16; param N : i16; param is_left_edge : bool;

Performance Features

Builtins

- Similar to function calls with @ in front of function name
- Language extensions without special syntax
- Used for invoking special compiler functionality

Tasks

- Core building blocks of CSL
- Special functions used to implement dataflow programs
- Triggered by incoming wavelets on a specific color

```
// Initialize a tensor of four rows
// and five columns with all zeros.
var matrix = @zeros([4,5]f16);
```

```
color recvColor;
var globalValue: u16 = 0;
task recvTask(data: u16) void {
  globalValue = data;
}
comptime {
  @bind_task(recvTask, recvColor);
  @set_local_color_config(recvColor,
   .{ .rx = .{ WEST }, .tx = .{ RAMP } });
}
```


SDK usage and impact

Over the past year, SDK has evolved from a closed tool requiring NDA access to a public platform for Wafer-Sca Computing. We're supporting more research and publications than ever. ETH

Scaling the "Memory Wall" for Multi-Dimensional Seismic **Processing with Algebraic Compression on Cerebras CS-2** Systems

le	Ex	Hatem Ltaief Yuxi Hong treme Computing Researc	h Center	Leighton V Mathias Jac Cerebras Syst	Wilson cquelin tems Inc.	Matte Dav Extreme Compu	eo Ravasi id Keyes tting Research	Center
	Using Wafer	-Scale AI Hardy	vare for Tra	aditional H	IPC Sim	ulation Workl	oads: A	ering
	Case Study	in Developing a	Monte Carl 'pras WSE2	lo Particle 2 AI Accel	Transpo lerator	rt Application	a for the	ence
Technische Hochsc stitute of Technolo	chule Zürich ogy Zurich	SPCL	Kazutomo	Yoshii* A	Andrew Sie	gel* Leighton	ı Wilson [‡]	.sa 12 pages.
nmunica Cerebras	ation Collectives 5 Wafer-Scale En	o for the ngine	p learning has highly innova- chitecture, the ures 40 GB of	portance to fields, and k failed to ach peak FLOP	both fission because the lieve more th performance	and fusion reactor MC algorithm has an a few percent of due to its inherentl	simulation historically f theoretical y stochastic	ELL
	Bachelor Thesis	Massiv	ely Dist	ributed	Finite	-Volume	Flux	
	Piotr Luczynski pluczynski@ethz.ch	Ryuichi Sai* TotalEnergies EP Rese:	arch &	Compu Mathias Ja Cerebras S	tation cquelin ystems	Françoi TotalEnergie	s P. Hamon es EP Research	ı &
on of a Co erator Hai ¹ , Andrew Sid f Chicago, Ch	ntinuous Energy rdware egel ¹ nicago, IL	Houston, Texas, US ryuichi@rice.edu To	SA SA Mauricio Araya MalEnergies EP Re Technology US, Houston, Texas,	i-Polo search & LLC. USA	Randol Lawrence I Livermore	ph R. Settgast ivermore National iboratory c, California, USA	, Texas, USA	J
Kern	els	Plotr Luczynski D Lukas Glashazzi (advisor) Le Patrick iff (advisor) To	anleie De Sensi (advisor) Near-(prsten Hoeffer (advisor)	optimal Reduce	on the Cerebra	IS Wafer Scale Engine	1D Alle	PEL.
cture		Algorithms in S	Spatial Com	puting	luating		14000 12000 10000	15
Mauricio Ara	ya-Polo [†]	uiche ntnu.no dheim	Filip I dofilip	Dobrosavljević @student.ethz.ch ETH Zurich	5	0 1 2 3 4 5 Results	5000 500 5000 5	ing / ·
iston, TX, USA	A	y anov	Tor	Switzerland sten Hoefler		simulated	e tree 2 effp32 ele Reduce followed by broadcast	2 th 2 th ments 8 I better than classical pattern
HPC system ithmic changes estigations into	design have enabled opti- s in scientific and business o non-hierarchical architec- ol effeitance (2) (4) The	iethz.ch ich nd	torsten.h F	ioefler@inf.ethz.ch ETH Zurich Switzerland		predicted than 0 20 assessed remain pre-onter in generation of the onter #522 clements B	2 0+1+2 1.resus 1.	to utilize the whole grid to the leftmost PE in the row by reduce in the column 532 x 532
parallel system considered as a ew chips from ems with dataff possess higher t lower energy e explore the	ar enterency [5], [4]. The maximum swith distributed memory alternative to traditional ac- Cerebras [5], Groq [6], and low-like architecture design r memory bandwidth, lower cost for memory access. capabilities of a dataflow	amental component of vari- putational physics, machine live efficient manipulation o elements, canabing more representations of complex arse matrix multiplications foras WSE-2, through explo- nization strategies, leading	COO CSC CSR Ellpack	WSE-2 Optimizations Alignment DSR Operations Memory Copy 55.4	Grid-CSC Grid-CSR Grid-Ellpack	election est implementations or one est the the the the the	ALE STREET	teophase Ja do teo National Labor

Eidgenössische Swiss Federal In **Near-Optimal Wafer-Scale Reduce** Piotr Luczynski Lukas Gianinazzi Patrick Iff Department of Computer Science Department of Computer Science Department of Computer Science ETH Zurich ETH Zurich ETH Zurich Con Leighton Wilson Daniele De Sensi Torsten Hoefler apienza University of Rome Department of Computer Science DEPARTMENT OF INFORMATICS ETH Zurich and various other HPC applications [35, 38, 51, 58]. However, max-TECHNISCHE UNIVERSITÄT MÜNCHEN imizing performance on this architecture necessitates tailoring ctives are a communication patterns to its unique characteristics. This need (HPC) applimotivates our investigation of Reduce and AllReduce on the WSE n of Reduce SE). This ar-1.2 Limitations of state-of-the-art erformance Master's Thesis in Informatics tional prob-Current wafer-scale Reduce and AllReduce implementations are primarily optimized for extreme vector sizes. This means they ar stimate the our predicaddition to Monte Carlo with Single-Cycle Latency: Optimization everal new **Implementation and Evaluation of Matrix** Cross Section Lookup Kernel for AI Accel reover, we **Profile Algorithms on the Cerebras** peration on John Tramm ^{1,*}, Bryce Allen^{1,2}, Kazutomo Yoshii Wafer-Scale Engine **CereSZ: Enabling and Scaling Error-bounded Lossy** Con Matrix-Free Finite Volume Vyas Giridharan on a Dataflow Archited Ryuichi Sai*, François P. Hamon[†], John Mellor-Crummey^{*}, Trackable Agent-based Evolution Models at Wafer So *Rice University, Houston, TX, USA [†]TotalEnergies EP Research & Technology US, LLC., Hou Matthew Andres Moreno^{1,2,3,*}, Connor Yang⁴, Emily Dolson^{5,6}, and Lui ¹Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, U ²Center for the Study of Complex Systems, University of Michigan, Ann Arbor, Unite Abstract-Fast and accurate numerical simulations are cru-Advancements in

³Michigan Institute for Data Science, University of Michigan, Ann Arbor, United S ⁴Undergraduate Research Opportunities Program, University of Michigan, Ann Arbor, U ⁵Department of Computer Science and Engineering, Michigan State University, East Lansing ⁶Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, ¹ *corresponding author: morenoma@umich.edu

Abstract

Continuing improvements in computing hardware are poised to transform capabilities for in silico modeling of cross-scale phenomena underlying major open questions in evolutionary biology and artificial life, such as transitions in individuality, eco-evolutionary dynamics, and rare evolutionary events. Emerging ML/AI-oriented and 11kg the 950 000 -

cial for designing large-scale geological carbon storage projects mizations and algori ensuring safe long-term CO₂ containment as a climate change fields. Previous inve mitigation strategy. These simulations involve solving numerous large and complex linear systems arising from the implicit Finite Volume (FV) discretization of PDEs governing subsurface emergence of highly fluid flow. Compounded with highly detailed geomodels, solving architecture is now of linear systems is computationally and memory expensive, and celerated systems. Ne accounts for the majority of the simulation time. Modern memory hierarchies are insufficient to meet the latency and bandwidth

needs of large-scale numerical simulations. Therefore, exploring

algorithms that can leverage alternative and balanced paradigms,

such as dataflow and in-memory computing is crucial. This

tures have improved SambaNova [7], syste and on-chip memory memory latency, and In this article, we

CS SDK Hands-On

Link to Hands-On Session Material

IPU-Tiles[™]

IPU-Core[™]

GRAPHCORE

Graphcore Intelligence Processing Unit (IPU)

IPU-Tiles™

1472 independent IPU-Tiles™ each with an IPU-Core™ and In-Processor-Memory™

IPU-Core[™]

1472 independent IPU-Core™

8832 independent program threads executing in parallel

In-Processor-Memory[™]

900MB In-Processor-Memory[™] per IPU

65TB/s memory bandwidth per IPU

...gonne 🕰

GRAPHCORE SOFTWARE

34

Bulk Synchronous Parallel (BSP)

- The IPU uses the bulk-synchronous parallel (BSP) model of execution where the execution of a task is split into steps.
- Each step consists of the following phases:
 - Iocal tile compute,
 - ☑ global cross-tile synchronization,
 - data exchange

Graphcore PyTorch Hands-On

Link to Hands-On Session Material

Poplar software stack

General purpose, extensible Parallel programming framework which is close to metal and targets the IPU

Programming model

Computational Graph

- Data (variables in the graph)
- Compute tasks (vertices)
- Edges that connect them
- The vertices from the multiple compute sets in a program form the computational graph of the program

Variables

37

- Data is stored in the graph in fixed size multi-dimensional tensors.
- Variables can be distributed over multiple tiles

Vertices

- vertices are compute tasks, A vertex is a specific piece of work to be carried out.
- A vertex runs on a single tile. Many vertices are needed to fully utilize the device
- The edges determine which variable elements are processed by the vertex. A vertex can connect to a single element or a range of elements.
- Each vertex is associated with a codelet. The piece of code that a vertex runs is known as a *codelet*

THE POPLAR GRAPH

VARIABLES

	0.3		3.22		44.5		3.13	3	6.49	2
0.3	3	3.2	2	44.	5	3.1	13	6.	<u>4</u> 9	1
0.3	3.	.22	44	4.5	3	.13	6	.49	3.1	Η
24.3	9	.2	0.	.01	0.	.23	95	53.1	3	Ц
0.22	12	23.2	3	8.2	5	.67	5	5.3	1	μ
5.6	99	9.8	7	.22	8.	.66	2	2.1	┣	J

3-d tensor (3 x 4 x 5)

Data is stored in the graph in fixed size multi-dimensional tensors.

VARIABLES

COMPUTE SETS

Compute sets specify sets of vertices to execute in parallel

Poplar verifies the compute set is free of data races

programming model

Compute Sets

42

- A compute set is a highly parallel piece of compute.
- Each compute set consists of many vertices that are compute tasks Steps:
 - Exchange Transfer inputs,
 - Compute Run vertices in Parallel
 - Exchange Transfer outputs
- Exchange is required when a vertex in a compute set needs to read or write data which is stored on another tile's memory.

Host programs use the poplar library.	#include <poplar engine.hpp=""></poplar>	
The Graph class is used to build up the computation graph.	<pre>using namespace poplar; using namespace poplar::program; Graph graph(target); graph.addCodelets("my-codelets.cpp");</pre>	loaded into the graph.
The Engine class represents a fully compiled program ready to run on hardware.	Program prog1, prog2; constructMyGraph(graph, &prog1, &prog2); Engine eng(device, graph, {prog1, prog2}); eng.run(0);	Control programs are built up out of instances of the Program class.

CODELET DEFINITIONS

The fields of the vertex specify its inputs, outputs and internal data.

class AdderVertex : public Vertex { public: Input <float> x; Input<float> y; Output<float> z; float bias;</float></float></float>	
<pre>bool compute() { *z = x + y + bias; return true; }</pre>	The spe exe

Each codelet is defined as a C++ class that inherits from the Vertex class.

The compute method specifies the vertex execution behaviour.

BUILDING THE COMPUTE GRAPH

```
Graph g(device);
g.addCodelets("codelets.cpp");
Tensor t1 = g.addVariable(FLOAT, \{4, 5\});
Tensor t2 = g.addVariable(FLOAT, \{4\});
ComputeSet cs = g.addComputeSet("myComputeSet")
VertexRef v1 = g.addVertex(cs, "AdderVertex");
VertexRef v2 = g.addVertex(cs, "AdderVertex");
g.connect(t1[1][1], v1["x"]);
g.connect(t1.slice({3, 1}, {4, 3}), v1["y"]);
g.connect(t2[0], v1["z"]);
g.connect(t1[0][3], v2["x"]);
g.connect(t1.slice({2, 2}, {3, 4}), v2["y"]);
g.connect(t2[3], v2["z"]);
g.setTileMapping(t1.slice(\{0, 0\}, \{4, 2\}), 0);
g.setTileMapping(t1.slice({0, 2}, {4, 5}), 1);
q.setTileMapping(t2, 2);
g.setTileMapping(v1, 0);
```

g.setTileMapping(v2, 1);

CREATING CONTROL PROGRAMS

Graph g(device);
g.addCodelets("codelets.cpp");

• • •

auto prog = Sequence(); prog.add(Execute(cs1)); prog.add(Execute(cs2));

prog

Execute(cs1); Execute(cs2);

CREATING THE ENGINE

Graph g(device);
g.addCodelets("codelets.cpp");

• • •

auto prog = Sequence(); prog.add(Execute(cs1)); prog.add(Execute(cs2));

Engine eng(device, graph, {prog});

Execute(cs1); Execute(cs2);

Profiling: popvision tools

48

EXECUTION TRACE REPORT

View the output of instrumenting a Poplar program, capturing cycle counts for each step. See execution statistics, tile balance, cycle proportions and compute-set details.

GRAPH DATA

Plot graph data of any numerical data points from the host or IPU processor systems, such as board temperature, power consumption and IPU utilisation.

HOST EXECUTION ANALYSIS

Understand the execution of IPU-targeted software on your host system processors. Identify any bottlenecks between CPUs and IPUs across a visual interactive timeline.

	9 G U	A COLORIDA CONTRACTOR						
da E	512 MB-							
17 10	256 MB-		-ko	alanda	- J_l	h_	sel-	
	08 0 10	20 20 40 50	60	20 80 90 100 11 Program Steps	0 120	do vio	150 NO 170	18
	Selected Program Step Name (source): OnTil Name (target): OnTil Always Live Variables	eExecute (conv2d_t/Conv2D/co eExecute (conv2d_t/Conv2D/co Not Always Live Variables	involution.166/ involution.166/ Vertices	Conv3x3/(Convolve) Conv3x3/(Convolve) Cycle Estimates				
	Variable			Source: All Tiles 0	Target: All	Show	differences between selecte	d ste
	Total			80.1 MB		150 MB	69.8 MB	
9	<message.com 2d_1="" co<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></message.com>							
		onv2D/convolution.166/in>		39.8 MB		16.8 MB	46.9 M8 (54.10%)	
×	<message.conv2d_1 co<="" td=""><td>onv2D/convolution.166/in> onv2D/convolution.166/kernel+</td><td></td><td>39.8 MB 10.1 MB</td><td></td><td>16.8 MB 23.4 MB</td><td>46.9 N8 (54.10%) 13.3 M8 (56.84%)</td><td>4</td></message.conv2d_1>	onv2D/convolution.166/in> onv2D/convolution.166/kernel+		39.8 MB 10.1 MB		16.8 MB 23.4 MB	46.9 N8 (54.10%) 13.3 M8 (56.84%)	4
×	<message.conv2d_1 co<br="">conv2d_1/Conv2D/conv</message.conv2d_1>	onv2D/convolution.166/im- onv2D/convolution.166/kernel- volution.166/Conv_3x3/partials		39.8 MB 10.1 MB 16.0 MB		16.8 MB 23.4 MB 18.0 MB	46.9 M8 (54.10%) 13.3 MB (56.64%) 2.0 MB (111%)	-
×	<message.com 2d_l="" co<br="">com/2d_l/Com/2D/com/ com/2d/Con/2D/com/</message.com>	anv2D/convolution.166/im- anv2D/convolution.166/kernel- valution.166/Conv_3x3/partials ilution.165/Conv_3x3/partials		39.8 MB 10.1 MB 16.0 MB 8.0 MB		16.8 MB 23.4 MB 18.0 MB 18.0 MB	46.9 M8 (54.10%) 13.0 M8 (56.84%) 2.0 M8 (11.11%) 10.0 M8 (55.56%)	

REPORT COMPARISONS

Open two reports at once to compare their memory, execution, liveness and operations. Visualise where efficiencies can be made with different model parameters.

		Ild Ille and a second a second with the with the second se	
08-1	100 200 300 /	ຈຽວ ຮຽວ ແລ້ວ ກຽວ ແລ້ວ ເວັດ ເດັ່ວ ເກີດອີດ ແລ້ວ ເພື່ອ ເຊິ່ງແກ່ ໂຮງອີດ ເພື່ອວ ເຫຼົ່ອວ ເກັດວ ⊡ີ Not always New	1800 1
selected Prog	ram Step		
ame OnTile	Execute (b3/2/2/group_norm/64/	(GroupNormalizatin/74)/operandGrad/Non/gradics/Op/Httipty)	
ways Live Var	iables Not Always Live Varia	ables Vertices Cycle Estimates	
 Filter venatil 707 			256 kB
 707 b1/0/1/group 	ni 19_norm/16/GroupNormalization:/	0	256 kB 256 kB
 0 Filter vendti 707 b1/0/1/grou b1/0/1/com 	is ip_norm/16/GroupNormalization+ //Conv/782/convolution/Conv_3x	0 alparlalitekuesou	256 k8 256 k8 256 k8
 Piter ventor 707 bt/0/1/grou bt/0/1/com pop/lbs 	n Ip_norm/16/GroupNormalization/ //Conv/782/convolution/Conv_3x name api	0 3]partillebucebut b0/01km/cB/kmrkbuten commution	256 k8 256 k8 256 k8
 Piter vensiti 707 bt/0/1/grou bt/0/1/grou pt/0/1/grou poplibs poplar 	p.norm/16/GroupNormalizations //Com/782/convolution/Com/_3x api - ang cache	0 33partisihekarobrt BUMDensonCom/REZkonvekusan osmentaden	256 k8 256 k8 256 k8
C Fitter water 707 bt/0/1/grou bt/0/1/com poplibs poplar	p_norm/16/GroupNormalizations/ (Com/1782/convolution/Com/ 3x appi appi appi and back back back back back back back back	0 33partisihekurolott MUNIKanon/Razkanekuran olonnalistar (k. 16. 32. 32) k.	256 k8 256 k8 256 k8 256 k8
C filter venter 707 bt/0/1/grou bt/0/1/com poplibs poplar	p, norm/h8/GroupNormalization/ (Com/R3/GioupNormalization/ (Com/R3/GioupNormalization/ appl = appl =	0 23Janraikhducródz dolfylosnychowy (123Janruduson edoroducen (k. 14, 32, 32) felse	256 kB 256 kB 256 kB ©
 C) Filter venabli 707 bt/0/1/gros. bt/0/1/com poplibs poplar 	p, norm/fkjCrougNormalizations pp, norm/fkjCrougNormalizations app - argp - cloche - shap - ppen - ppen - ppen - ppen - stroppoenAndFigWeights - troppoenAndFigWeights - stroppoenAndFigWeights	0 2)2)20110100.0x00.0t 2)201101010200011222000000 convex.0x000 4)20110200000000000000000000000000000000	256 kB 256 kB 256 kB
 Piter variable 707 b1/0/1/grou b1/0/1/grou b1/0/1/grou poplibs poplar 	p_rom/nG/GroupNormalization- (Com/182)Convolation(Com_3e appl - speak -	0 Stjavrisihekuročki Michanoglada (k. 16. 32. 32) falie falie (l. 6. 16. 3. 3) pojstki	256 kB 256 kB 256 kB 0

IPU MEMORY ANALYSIS

Capture memory information from your ML models when executed on IPUs. Inspect variable placement, size and liveness throughout the execution.

PopVision Graph Analyzer

PopVision System Analyzer

Graphcore Poplar Hands-On

Link to Hands-On Session Material

SambaNova Cardinal SN30 RDU

Dataflow Architectures

The old way: kernel-by-kernel Bottlenecked by memory bandwidth and host overhead

> The Dataflow way: Spatial Eliminates memory traffic and overhead

SambaNova DataScale SN30-8 System

- 8 x Cardinal SN30 Reconfigurable Dataflow Unit
- 8 TB total memory (using 64 x 128 GB DDR4 DIMMs)
- 6 x 3.8 TB NVMe (22.8 TB total)
- PCle Gen4 x16
- Host module

Samba Compilation Flow

Samba

 SambaNova PyTorch compilation & run APIs

• Graph compiler

 High-level ML graph transformation & optimizations

• Kernel compiler

 Low-level RDU operator kernel transformation & optimizations

Kernel library

 RDU operator implementations

Sambaflow Hands-On

Link to Hands-On Session Material

55 Argonne Leadership Computing Facility

Groq LPU Overview

Groq LPU Building Blocks

Build different types of specialized SIMD units

Architecture Empowering Software

Software-controlled memory

No dynamic hardware caching

 Compiler aware of all data locations at any given point in time

Flat memory hierarchy (no L1, L2, L3, etc)

 Memory exposed to software as a set of physical banks that are directly addressed

Large on-chip memory capacity (220 MiB) at very high-bandwidth (80 TBps)

 Achieves high compute efficiency even at low operational intensity

GroqWare[™] Suite

DIVERSE SUITE OF DEVELOPMENT TOOLS

Out-of-Box

Productivity

Tools

Groq Compiler provides out-of-box support for standard Deep Learning models

GroqView Profiler provides visualization of the chip's compute and memory usage at compile time

GroqFlow Tool Chain enables a single line of Pytorch or TensorFlow code to import and transform models through a fully automated tool chain to run on Groq hardware

63 © 2024 Groq, Inc. | Groq Al Workshop Argonne Leadership Computing Facility

General Groq LLM Development Flow

Modify PyTorch Model

Export ONNX Model

Convert ONNX Model from fp32 to fp8/fp16

Decoder Partition

Groq Compile!

© 2024 Groq, Inc. | Groq Al Workshop 64 Argonne Leadership Computing Facility Multi-node/Multi-rack Host-Code Invocation

Groq Hands-On

Link to Hands-On Session Material

Thank You

- This research was funded in part and used resources of the Argonne Leadership Computing Facility (ALCF), a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.
- Murali Emani, Varuni Sastry, William Arnold, Krishna Teja Chitty-Venkata, Venkatram Vishwanath
- Our current AI testbed system vendors Cerebras, Graphcore, Groq, Intel Habana and SambaNova.
- Many slides are courtesy of AI Testbed vendors.

Please reach out for further details Sid Raskar, <u>sraskar@anl.gov</u>

