

AI Testbeds at ALCF

OCTOBER 30TH, 2024

Contributors: Murali Emani, Varuni Sastry, Bill Arnold, Krishna Teja Chitty-Venkata, Venkat Vishwanath

SIDDHISANKET (SID) RASKAR

sraskar@anl.gov
Argonne National Laboratory

Argonne Leadership Computing Facility3

Growth of computer performance

An era without
Dennad’s scaling along
with reduced Moore’s

law and Amdahl’s law is
in full effect.

Motivation

Argonne Leadership Computing Facility4

Motivation

• Charles E. Leiserson et al. ,There’s plenty of room at the Top: What will drive computer performance after Moore’s law?. Science368, eaam9744(2020). DOI:10.1126/science.aam9744

• John L. Hennessy and David A. Patterson. 2019. A new golden age for computer architecture. Commun. ACM 62, 2 (February 2019), 48–60. https://doi.org/10.1145/3282307

Better Software and algorithms

Domain Specific Architectures

and Languages

4

Argonne Leadership Computing Facility5

ALCF AI Testbed

• Infrastructure of next-generation
machines with AI hardware accelerators

• Provide a platform to evaluate usability
and performance of AI4S applications

• Understand how to integrate AI systems
with supercomputers to accelerate
science

Cerebras CS-2 SambaNova DataScale
SN30

Graphcore
Bow Pod64

GroqRackHabana
Gaudi1

https://www.alcf.anl.gov/alcf-ai-testbed

Argonne Leadership Computing Facility6

• Cerebras: 2 CS-2 nodes, each with 850,000
Cores, compute-intensive models

• SambaNova: DataScale SN30 8 nodes
(8 SN30 RDUs per node) - 1TB mem per
device, models with large memory footprint

• Graphcore: Bow Pod64 4 nodes
(16 IPUs per node) - MIMD, irregular
workloads such as graph neural networks

• GroqRack: 8 nodes, 8 GroqNodes per node -
inference at batch 1

• Habana Gaudi1: 2 nodes, 8 cards per node -
On-chip integration of RDMA over Converged
Ethernet (RoCE2), scale-out efficiency

Cerebras CS-2 SambaNova DataScale
SN30

Graphcore
Bow Pod64

GroqRackHabana
Gaudi1

ALCF AI Testbed
https://www.alcf.anl.gov/alcf-ai-testbed

Argonne Leadership Computing Facility7

Von Neumann vs spatial architectures

➢ Limitations of Traditional Architectures

➢ Heavy data movement leads to Increased

Energy Cost in GPUs

➢ Rise of domain-specific dataflow inspired

architectures

7

SPATIAL RECONFIGURABLE ARCHITECTURES

PE PE PE PE

PE PE PE PE

PE PE PE PE

Mem PE PE PE

M

E

M

O

R

Y

Workflow

➢ Program is represented as a graph

➢ This program graph is mapped on the architecture

8

SPATIAL RECONFIGURABLE ARCHITECTURES

PE PE PE PE

PE PE PE PE

PE PE PE PE

Mem PE PE PE

M

E

M

O

R

Y

PE PE PE PE

PE PE PE PE

PE PE PE PE

Mem PE PE PE

M

E

M

O

R

Y

NET NET PE PE PE PE

PE PE PE PE

PE PE PE PE

Mem PE PE PE

M

E

M

O

R

Y

NET

Workflow

➢ Program is represented as a graph

➢ This program graph is mapped on the architecture

9

Argonne Leadership Computing Facility10

Cerebras CS2

SambaNova

Cardinal

SN30

Groq

GroqRack

GraphCore

GC200 IPU

Habana

Gaudi1
NVIDIA A100

Compute Units 850,000 Cores 640 PCUs 5120 vector ALUs 1472 IPUs
8 TPC + GEMM

engine

6912 Cuda

Cores

On-Chip

Memory

40 GB L1, 1TB+

MemoryX

>300MB L1

1TB
230MB L1 900MB L1

24 MB L1

32GB

192KB L1

40MB L2

40-80GB

Process 7nm 7nm 7 nm 7nm 7nm 7nm

System Size

2 Nodes

including

Memory-X and

Swarm-X

8 nodes (8

cards per node)

9 nodes

(8 cards per

node)

4 nodes

(16 cards per

node)

2 nodes

(8 cards per

node)

Several systems

Estimated

Performance of

a card (TFlops)

>5780 (FP16) >660 (BF16)
>250 (FP16)

>1000 (INT8)
>250 (FP16) >150 (FP16)

312 (FP16), 156

(FP32)

Software Stack

Support

Tensorflow,

Pytorch

SambaFlow,

Pytorch
GroqAPI, ONNX

Tensorflow,

Pytorch, PopArt

Synapse AI,

TensorFlow and

PyTorch

Tensorflow,

Pytorch, etc

Interconnect Ethernet-based Ethernet-based RealScale
TM

IPU Link Ethernet-based NVLink

Argonne Leadership Computing Facility11

Director’s Discretionary (DD) awards

support various project objectives from

scaling code to preparing for future

computing competition to production

scientific computing in support of strategic

partnerships.

Allocation Request Form

Getting Started on ALCF AI Testbed:

Apply for a Director’s Discretionary (DD)
Allocation Award

AI Testbed User Guide

Cerebras CS-2,
SambaNova Datascale SN30,
GroqRack and
Graphcore Bow Pod64
are available for allocations

Director’s Discretionary (DD)

Allocation Award

https://www.alcf.anl.gov/science/directors-discretionary-allocation-program
https://www.alcf.anl.gov/alcf-ai-testbed

Argonne Leadership Computing Facility12

Recent Publications

• LLM-Inference-Bench: Inference Benchmarking of Large Language Models on AI Accelerators
Krishna Teja Chitty-Venkata, Siddhisanket Raskar, Bharat Kale, Farah Ferdaus, Aditya Tanikanti, Ken Raffenetti, Valerie Taylor, Murali
Emani, Venkatram Vishwanath, "LLM-Inference-Bench: Inference Benchmarking of Large Language Models on AI Accelerators," 2024
IEEE/ACM International Workshop on Performance Modeling, Benchmarking and Simulation of High-Performance Computer Systems
(PMBS), Atlanta, GA, USA, 2024.

• Toward a Holistic Performance Evaluation of Large Language Models Across Diverse AI Accelerators
Murali Emani, Sam Foreman, Varuni Sastry, Zhen Xie, William Arnold, Rajeev Thakur, Venkatram Vishwanath, Michael E Papka, Sanjif
Shanmugavelu, Darshan Gandhi, Hengyu Zhao, Dun Ma, Kiran Ranganath, Rick Weisner, Jiunn-yeu Chen, Yuting Yang, Natalia Vassilieva,
Bin C Zhang, Sylvia Howland, Alexander Tsyplikhin. 2024 IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW)

• GenSLMs: Genome-scale language models reveal SARS-CoV-2 evolutionary dynamics
Maxim Zvyagin, Alexander Brace, Kyle Hippe, Yuntian Deng, Bin Zhang, Cindy Orozco Bohorquez, Austin Clyde, Bharat Kale, Danilo Perez
Rivera, Heng Ma, Carla M. Mann, Michael Irvin, J. Gregory Pauloski, Logan Ward, Valerie Hayot, Murali Emani, Sam Foreman,
Zhen Xie, Diangen Lin, Maulik Shukla, Weili Nie, Josh Romero, Christian Dallago, Arash Vahdat, Chaowei Xiao, Thomas Gibbs, Ian Foster,
James J. Davis, Michael E. Papka, Thomas Brettin, Rick Stevens, Anima Anandkumar, Venkatram Vishwanath, Arvind Ramanathan
** Winner of the ACM Gordon Bell Special Prize for High Performance Computing-Based COVID-19 Research, 2022,

 DOI: https://doi.org/10.1101/2022.10.10.511571

• A Comprehensive Evaluation of Novel AI Accelerators for Deep Learning Workloads
Murali Emani, Zhen Xie, Sid Raskar, Varuni Sastry, William Arnold, Bruce Wilson, Rajeev Thakur, Venkatram Vishwanath, Michael E Papka,
Cindy Orozco Bohorquez, Rick Weisner, Karen Li, Yongning Sheng, Yun Du, Jian Zhang, Alexander Tsyplikhin, Gurdaman Khaira, Jeremy
Fowers, Ramakrishnan Sivakumar, Victoria Godsoe, Adrian Macias, Chetan Tekur, Matthew Boyd, 13th IEEE International Workshop on
Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS) at SC 2022

Argonne Leadership Computing Facility13

Recent Publications
• Enabling real-time adaptation of machine learning models at x-ray Free Electron Laser facilities with high-speed training optimized

computational hardware
Petro Junior Milan, Hongqian Rong, Craig Michaud, Naoufal Layad, Zhengchun Liu, Ryan Coffee, Frontiers in Physics
DOI: https://doi.org/10.3389/fphy.2022.958120

• Intelligent Resolution: Integrating Cryo-EM with AI-driven Multi-resolution Simulations to Observe the SARS-CoV-2 Replication-
Transcription Machinery in Action*
Anda Trifan, Defne Gorgun, Zongyi Li, Alexander Brace, Maxim Zvyagin, Heng Ma, Austin Clyde, David Clark, Michael Salim, David Har
dy,Tom Burnley, Lei Huang, John McCalpin, Murali Emani, Hyenseung Yoo, Junqi Yin, Aristeidis Tsaris, Vishal Subbiah, Tanveer Raza,J
essica Liu, Noah Trebesch, Geoffrey Wells, Venkatesh Mysore, Thomas Gibbs, James Phillips, S.Chakra Chennubhotla, Ian Foster, Rick
Stevens, Anima Anandkumar, Venkatram Vishwanath, John E. Stone, Emad Tajkhorshid, Sarah A. Harris, Arvind Ramanathan,
International Journal of High-Performance Computing (IJHPC’22) DOI: https://doi.org/10.1101/2021.10.09.463779

• Stream-AI-MD: Streaming AI-driven Adaptive Molecular Simulations for Heterogeneous Computing Platforms
Alexander Brace, Michael Salim, Vishal Subbiah, Heng Ma, Murali Emani, Anda Trifa, Austin R. Clyde, Corey Adams, Thomas Uram,
Hyunseung Yoo, Andrew Hock, Jessica Liu, Venkatram Vishwanath, and Arvind Ramanathan. 2021 Proceedings of the Platform for
Advanced Scientific Computing Conference (PASC’21). DOI: https://doi.org/10.1145/3468267.3470578

• Bridging Data Center AI Systems with Edge Computing for Actionable Information Retrieval
Zhengchun Liu, Ahsan Ali, Peter Kenesei, Antonino Miceli, Hemant Sharma, Nicholas Schwarz, Dennis Trujillo, Hyunseung Yoo, Ryan
Coffee, Naoufal Layad, Jana Thayer, Ryan Herbst, Chunhong Yoon, and Ian Foster, 3rd Annual workshop on Extreme-scale Event-in-
the-loop computing (XLOOP), 2021

• Accelerating Scientific Applications With SambaNova Reconfigurable Dataflow Architecture
Murali Emani, Venkatram Vishwanath, Corey Adams, Michael E. Papka, Rick Stevens, Laura Florescu, Sumti Jairath, William Liu, Tejas
Nama, Arvind Sujeeth, IEEE Computing in Science & Engineering 2021 DOI: 10.1109/MCSE.2021.3057203.

* Fiinalist in the ACM Gordon Bell Special Prize for High Performance Computing-Based COVID-19 Research, 2021

Argonne Leadership Computing Facility14

• 850,000 cores optimized for sparse linear algebra

• 46,225 mm2 silicon

• 2.6 trillion transistors, 7nm process technology

• 40 gigabytes of on-chip memory

• 20 PByte/s memory bandwidth 220 Pbit/s

fabric bandwidth

Argonne Leadership Computing Facility15

WSE-2 Architecture Basics
The WSE appears as a logical 2D array of

individually programmable Processing Elements

Flexible compute

• 850,000 general purpose CPUs

• 16- and 32-bit native FP and integer data types

• Dataflow programming: Tasks are activated or
triggered by the arrival of data packets

Flexible communication

• Programmable router

• Static or dynamic routes (colors)
• Data packets (wavelets) passed between PEs

• 1 cycle for PE-to-PE communication

Fast memory

• 40GB on-chip SRAM
• Data and instructions

• 1 cycle read/write

Tensors Tensors

…

…

…

…

…

… … … … … …

Fabric router

Processor

Memory

Offramp Onramp

PE

Argonne Leadership Computing Facility16

Wafer-Scale Cluster

Image Courtesy: Cerebras

Input preprocessing servers stream training data

MemoryX - Stores and streams model’s weights

SwarmX – weight broadcasts and gradient across
multiple CS2s

Compilation (maps graph to kernels) Execution
(training)

Argonne Leadership Computing Facility17

Argonne Leadership Computing Facility18

Integration with PyTorch

• Models defined in framework + Cerebras API

• Optimally maps from PyTorch to high performance kernels

• Uses polyhedral code-generation or hand-written kernels

• Compiler using industry standard MLIR framework

• Cerebras is an active contributor to the MLIR open- source
community

• User does not worry about distributed compute or
parallelism

Lowering from Model to Wafer

Reference Models

Model script

Ops Layer API

Cerebras Graph Compiler

Kernel library Kernel autogen

Placement & routing engine

CS-2

© 2023 Cerebras Systems Inc. All Rights Reserved 47

Argonne Leadership Computing Facility19

cstorch Software Stack

Cerebras torch
“device”

PyTorch

cstorch API

LazyTensorCore

LTC MLIR
Plugin

Runtime
Executor

Torch Dialect

Cerebras
MLIR Dialect

Wafer-Scale Cluster

Runtime Executor

• cstorch API mirrors torch API

• Helps with single device abstraction

• Tensor Ops traced through LazyTensorCore

• Graph-by-execution with lazy evaluation

• Also powers Google’s xla/tpu device

• MLIR translation from LTC provided by torch-mlir

• Hardware focused compiler ecosystem for torch

• Cerebras MLIR stack handles cluster optimizations

• Tensors get transferred to cluster as needed

• Initial weights sent before first step

• Inputs sent each step from custom data executor

• Execution driven asynchronously by cluster

Argonne Leadership Computing Facility20

CS Torch Hands-On

Link to Hands-On Session Material

mailto:https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop/tree/master/aiTestbeds/Cerebras/PyTorch

Argonne Leadership Computing Facility21

Cerebras SDK

A general-purpose parallel-computing platform and API allowing software developers to write custom
programs (“kernels”) for Cerebras systems.

Language
Host APIs with Python

CSL: Cerebras Software Language

Libraries Optimized primitives

Tools Simulator

Debugger

Visualization

Argonne Leadership Computing Facility23

Device: CSL

• Target software simulator or CS-2

• CSL programs run on groups of cores on the WSE,
specified by programmer

• Executes dataflow programs

From a Programmer’s Perspective

Host CPU(s): Python

• Loads program onto simulator or CS-2 system

• Streams in/out data from one or more workers

• Reads/writes device memory

Device Read/Write

Memory I/O +

Data Streams

Argonne Leadership Computing Facility24

• Types

• Functions

• Control structures

• Structs/Unions/Enums

• Comptime

• Builtins

• Module system

• Params

• Tasks

• Data Structure Descriptors

• Layout specification

CSL: Language Basics

Straight from C
(via Zig)

CSL specific

Used for writing

device kernel code

Familiar to

C/C++/HPC

programmers

Argonne Leadership Computing Facility25

Familiar Features

Types
• Syntax similar to other modern languages – Go, Swift, Scala, Rust

• Float (f16, f32), signed (i16, i32), unsigned (u16, u32), boolean (bool)

Functions
• Zig-style syntax

• Pass by value or reference and inlining automatically handled

Control Structures
• Traditional control flow: if, for, while, with zig and C style syntax

conditionals
while loop while loop with iterator range for loop

(also provides C-style for)

Argonne Leadership Computing Facility26

Comptime
• From Zig, block of code where all evaluation occurs at compile time

• Useful for frontloading computation to avoid runtime overhead

Params
• Like #define, but strongly typed

• Have to be “bound” completely during compilation

Modules
• Any CSL source code file is a “Module,” importable into other modules

• Imported modules acts as an instance of a unique struct type

• Multiple imports of the same module allowed

Quality of Life Features

m1.csl

p1.csl

Argonne Leadership Computing Facility27

Builtins
• Similar to function calls with @ in front of function name

• Language extensions without special syntax

• Used for invoking special compiler functionality

Tasks
• Core building blocks of CSL

• Special functions used to implement dataflow programs

• Triggered by incoming wavelets on a specific color

Performance Features

var

Argonne Leadership Computing Facility28

SDK usage and impact
Over the past year, SDK has evolved from a closed tool

requiring NDA access to a public platform for Wafer-Scale

Computing. We’re supporting more research and

publications than ever.

Argonne Leadership Computing Facility29

CS SDK Hands-On

Link to Hands-On Session Material

mailto:https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop/tree/master/aiTestbeds/Cerebras/SDK

Argonne Leadership Computing Facility30

Argonne Leadership Computing Facility31

Graphcore Intelligence Processing Unit (IPU)

Slide Courtesy: Graphcore

Argonne Leadership Computing Facility32

Slide Courtesy: Graphcore

Argonne Leadership Computing Facility33 18

POPLAR® SDK

POPVISION TOOLS

DEVELOPER ECOSYSTEM

GRAPH ENGINE

GC DEVICE ACCESS LAYER

PCIe DRIVERIPUOF DRIVER

GRAPH COMPILER

POPLIBS GCL POPLAR

POPLAR®

DRIVERS

FW BACKENDS

FRAMEWORKS

PARTITIONER POPIR POPIT

INFERENCE DEPLOYMENT

TOOLKIT
FRONTENDS

GRAPH ANALYZER

SYSTEM ANALYZER

DEBUGGER

DEVELOPMENT ENVIRONMENT

TUTORIALS

CODE EXAMPLES

DOCUMENTATION

VIDEOS

NATIVE IPU CODERS PROGRAM

APPS PORTFOLIO

ML APPLICATIONS

NLP/TRANSFORMERS

IMAGE CLASSIFICATION/CNNS

OBJECT DETECTION

LARGE MODELS

MLPERF

CONDITIONAL SPARSITY

GNNS

JUPYTER NOTEBOOKS

SYSTEM SOFTWARE

POPLAR

V-IPU

SYSTEM MONITORING

JOB DEPLOYMENT

K8S SLURM

PROMETHEUS

GRAFANA

XLA POPART+ POPDIST

GRAPHCORE SOFTWARE

HALOONNX

Argonne Leadership Computing Facility34

Bulk Synchronous Parallel (BSP)

• The IPU uses the bulk-synchronous parallel
(BSP) model of execution where the execution
of a task is split into steps.

• Each step consists of the following phases:

⏤ local tile compute,

⏤ global cross-tile synchronization,

⏤ data exchange

Additional Details

34

https://confluence.cels.anl.gov/display/AIFHPC/Graphcore

Argonne Leadership Computing Facility35

Graphcore PyTorch Hands-On

Link to Hands-On Session Material

mailto:https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop/tree/master/aiTestbeds/Graphcore/PyTorch

Argonne Leadership Computing Facility36

Poplar software stack

General purpose, extensible Parallel programming framework which is
close to metal and targets the IPU

36

Argonne Leadership Computing Facility37

Programming model

Vertices

• vertices are compute tasks, A vertex is a specific piece of work to be carried out.

• A vertex runs on a single tile. Many vertices are needed to fully utilize the device

• The edges determine which variable elements are processed by the vertex. A

vertex can connect to a single element or a range of elements.

• Each vertex is associated with a codelet. The piece of code that a vertex runs is
known as a codelet

Computational Graph

• Data (variables in the graph)

• Compute tasks (vertices)

• Edges that connect them

• The vertices from the multiple compute sets

in a program form the computational graph of
the program

Variables

• Data is stored in the graph in fixed size multi-dimensional tensors.

• Variables can be distributed over multiple tiles

37

Argonne Leadership Computing Facility38

THE POPLAR GRAPH

0.3 3.22 44.5 3.13 6.49

24.3 9.2 0.01 0.23 93.1

0.22 13.2 3.2 5.67 55.3

5.6 99.8 7.22 8.66 22.1

0.3 3.22 44.5

24.3 9.2 0.01

0.3 3.22 44.5 3.13 6.49

0.3 3.22 44.5 3.13

24.3 9.2 0.01 0.23

0.22 13.2 3.2 5.67

The graph is made up of:

• Data (variables in the graph)

• Compute tasks (vertices)

• Edges that connect them

39

Argonne Leadership Computing Facility39

0.3 3.22 44.5 3.13 6.49

124.3 9.2 0.01 0.23 953.

0.22 123.2 3.2 5.67 55.

5.6 99.8 7.22 8.66 22.1

0.3 3.22 44.5 3.13 6.49

24.3 9.2 0.01 0.23 95

0.22 123.2 3.2 5.67 55.

5.6 99.8 7.22 8.66 22.1

0.3 3.22 44.5 3.13 6.49
3.1

3
24.3 9.2 0.01 0.23 953.1

3

0.22 123.2 3.2 5.67 55.3

5.6 99.8 7.22 8.66 22.1

3-d tensor (3 x 4 x 5)

0.3 3.22 44.5 3.13 6.49

1-d tensor (5)

0.3 3.22

24.3 9.

40

2

2-d tensor (2 x 2)

Data is stored in the graph in fixed size multi-dimensional tensors.

VARIABLES

Argonne Leadership Computing Facility40

0.3

3.1

3

44.

5

3.2

2

6.4

9

24.

3

0.2

3

0.

01

9.2

95

3.1

0.2

2

5.6

7

3.2

123

.2

55.

3

5.6

8.6

6

7.2

2

99.

8

22.

1

0.3 3.22 44.5

0.01

3.13

0.23

6.49

93.124.3 9.2

0.22 13.2 3.2 5.67 55.3

5.6 99.8 7.22 8.66 22.1

VARIABLES

Variables can be

41

distributed over

multiple tiles

Argonne Leadership Computing Facility41

COMPUTE

SETS

0.3 3.22 44.5 3.13 6.49

24.3 9.2 0.01 0.23 93.1

0.22 13.2 3.2 5.67 55.3

5.6 99.8 7.22 8.66 22.1

0.3 3.22 44.5

24.3 9.2 0.01

0.3 3.22 44.5 3.13 6.49

0.3 3.22 44.5 3.13

24.3 9.2 0.01 0.23

0.22 13.2 3.2 5.67

Compute sets specify

47

sets of vertices to

execute in parallel

Poplar verifies the

compute set is free of

data races
Compute Set A

Compute Set B

Compute Set C

Argonne Leadership Computing Facility42

programming model

Compute Sets

• A compute set is a highly parallel piece of

compute.

• Each compute set consists of

many vertices that are compute tasks

Steps:
• Exchange Transfer inputs,

• Compute Run vertices in Parallel

• Exchange Transfer outputs

• Exchange is required when a vertex in a

compute set needs to read or write data

which is stored on another tile's memory.

42

Argonne Leadership Computing Facility43

#inc lude <poplar/Engine.hpp>

using namespace poplar ;

using namespace poplar::program;

…

Graph gr aph(t arget);

graph.addCodelets(“my-codelets .cpp”);

Program prog1, prog2;

constructMyGraph(graph, &prog1, &prog2);

Engine eng(dev ice, graph, {prog1, prog2}) ;

…

eng.run(0);

THE HOST

PROGRAMHost programs use

the poplar library.

Codelets are

loaded into

the graph.

Control

programs are

built up out of

instances of

the Program

class.

The Engine class

represents a fully

compiled program

ready to run on

hardware.

The Graph class is

used to build up

the computation

graph.

4
3

Argonne Leadership Computing Facility44

CODELET DEFINITIONS

c lass AdderVertex : pub l ic Vertex {

p ub l ic :
Input< f loat> x ;

Input< f loat> y ;

Output<float> z ;

f l o a t b ia s ;

bool compute() {

*z = x + y + bia s ;

r e tur n t r ue ;
}

}

Each codelet is

defined as a C++ class
that inherits from the

Vertex class.

The fields of the

vertex specify its
inputs, outputs and

internal data.

The compute method

specifies the vertex
execution behaviour.

4
4

Argonne Leadership Computing Facility45

BUILDING THE COMPUTE GRAPH

0.3 3.1344.53.22

24.3 0.239.2

6.49

953.1

0.22

0.01

3.2123.2 5.67 55.3

5.6 7.2299.8 8.66 22.1

9.3 2.95 103.2 0.001

g

t1

t2

Graph g(device);

g.addCodelets("codelets.cpp");

Tensor t 1 = g.addVariable(FLOAT, {4 , 5 }) ;

Tensor t 2 = g.addVariable(FLOAT, {4 }) ;

ComputeSet cs = g.addComputeSet(“myComputeSet”)

VertexRef v1 = g.addVertex(cs, “AdderVertex”);

VertexRef v2 = g.addVertex(cs, “AdderVertex”);

g .connect (t 1[1][1] , v1 [" x "]) ;
g .connec t(t1 . sl i ce ({3 , 1 } , { 4 , 3 }) , v1 [" y "]) ;

g .connect(t2 [0], v1 [" z "]) ;

cs

v1 v2g .connect (t 1[0][3] , v2 [" x "]) ;

g .connec t(t1 . sl i ce ({2 , 2 } , { 3 , 4 }) , v2 [" y "]) ;
g .connect(t2 [3], v2 [" z "]) ;

g. se tTi leMapp ing(t 1.s l i ce({0 , 0 } , { 4 , 2 }) , 0) ;

g. se tTi leMapp ing(t 1.s l i ce({0 , 2 } , { 4 , 5 }) , 1) ;
g.setTi leMapp ing(t2, 2) ;

g.setTi leMapping(v1, 0) ;

g.setTi leMapping(v2, 1) ;

Argonne Leadership Computing Facility46

CREATING CONTROL PROGRAMS

Graph g(device);
g.addCodelets("codelets.cpp");

…
auto prog = Sequence();

prog.add(Execute(cs1));
prog.add(Execute(cs2));

0.3 3.1344.53.22 6.49

24.3 0.230.019.2 953.1

0.22 5.673.2123.2 55.3

5.6 8.667.2299.8 22.1

9.3 0.001103.22.95

t1

t2

cs1 9.3 0.001103.22.95 t3

cs2

Execute(cs1);

Execute(cs2);

prog

Argonne Leadership Computing Facility47

CREATING THE ENGINE

Graph g(device);
g.addCodelets("codelets.cpp");

…
auto prog = Sequence();

prog.add(Execute(cs1));
prog.add(Execute(cs2));

Engine eng(device, graph, {p rog});

0.3 3.1344.53.22 6.49

24.3 0.230.019.2 953.1

0.22 5.673.2123.2 55.3

5.6 8.667.2299.8 22.1

9.3 0.001103.22.95

t1

t2

cs1 9.3 0.001103.22.95 t3

cs2

Execute(cs1);

Execute(cs2);

eng

prog

Argonne Leadership Computing Facility48

Profiling: popvision tools

PopVision

System

Analyzer

PopVision

Graph

Analyzer

48

Argonne Leadership Computing Facility49

Graphcore Poplar Hands-On

Link to Hands-On Session Material

mailto:https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop/tree/master/aiTestbeds/Graphcore/Poplar

Argonne Leadership Computing Facility50

SambaNova Cardinal SN30 RDU

7nm TSMC, 86B transistors

102 km of wire

640 MB on-chip,
1,024 GB external

688 TFLOPS (bf16)

RDU-ConnectTM

Cardinal SN30TM

Reconfigurable Dataflow
UnitTM

SILICON
RDU

SOFTWARE
SambaFlow

SYSTEMS
DataScale®

as-a-SERVICE
Pre-trained
Foundation Models

Argonne Leadership Computing Facility51

Cardinal SN30: Tile

51

Software-Driven Architecture
Tiled architecture with reconfigurable SIMD pipelines, distributed scratchpads, and programmed switches

Coalescing
Unit

Coalescing
Unit

AG Address
Generation
Unit

S Switch PMU Pattern
Memory
Unit

PCU
Pattern
Compute
Unit

S SSS

S SSS

S SSS

S SSS

PMU

PMU

PMU

PMUPMU

PCU

PCU PCU

PCU

AG

AG

AG

AG

Coalescing
Unit

Coalescing
Unit

TILE 5 TILE 6

TILE 7 TILE 8

Top-Level Interconnect

DDR PCIe

DRAM

(TBs)

Virtual Memory Manager

Host

Scale-Out

TILE 0 TILE 1

TILE 2 TILE 3

Argonne Leadership Computing Facility52

The old way: kernel-by-kernel
Bottlenecked by memory bandwidth

and host overhead

The Dataflow way: Spatial
Eliminates memory traffic and overhead

Simple

Convolution
Graph

Dataflow Architectures

Argonne Leadership Computing Facility53

SambaNova DataScale SN30-8 System

• 8 x Cardinal SN30 Reconfigurable Dataflow Unit

• 8 TB total memory (using 64 x 128 GB DDR4 DIMMs)

• 6 x 3.8 TB NVMe (22.8 TB total)

• PCIe Gen4 x16

• Host module

Image Courtesy: SambaNova

Argonne Leadership Computing Facility54

Samba PyTorchAPI

RDUs

Runtime

CPU

Kernel Compiler

Kernel Library Samba Runtime

Graph Compiler

Run PathCompilation Path

PEF

Samba Compilation Flow

5
4

Copyright © 2024 Sambanova Systems

● Samba
+ SambaNova PyTorch

compilation & run APIs

● Graph compiler
+ High-level ML graph

transformation & optimizations

● Kernel compiler
+ Low-level RDU operator kernel

transformation & optimizations

● Kernel library
+ RDU operator

implementations

Argonne Leadership Computing Facility55

Sambaflow Hands-On

Link to Hands-On Session Material

mailto:https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop/tree/master/aiTestbeds/Sambanova

Argonne Leadership Computing Facility56

Networking
480 GB/s bandwidth

Extensible ne twork scalabil ity

Mult iple topologies

Data Switch
Shift, Transpose, Permuter for

improved data movement and

data reshapes

Instruction Control
Mult iple instruct ion queues for

instruct ion parallel ism

SRAM Memory
Massive concurrency

80 TB/s of BW

230MB capacity

Stride insensitive

Groq TruePoint Matrix

4x Engines

750 TOP/s int8

188 TFLOP/s fp16

320x320 fused dot product

Programmable

Vector Units
5,120 Vector ALUs for

h igh performance

Groq LPU Overview

© 2024 Groq, Inc. | Groq AI Workshop Groq Public 56

Argonne Leadership Computing Facility57

Groq LPU Building Blocks

Bui ld different types of specialized SIMD units

© 2024 Groq, Inc. | Groq AI Workshop Groq Public 57

MXM
Matrix-Vector /

Matrix-Matrix Multiply

VXM
Vector-Vector

Operations

SXM
Data Reshapes

MEM
On-chip SRAM

Argonne Leadership Computing Facility61

Architecture Empowering Software

Software-controlled memory

No dynamic hardware caching

■ Compiler aware of all data locations
at any given point in time

Flat memory hierarchy
(no L1, L2, L3, etc)

■ Memory exposed to software as a

set of physical banks that are
directly addressed

Large on-chip memory capacity (220
MiB) at very high-bandwidth (80 TBps)

■ Achieves high compute efficiency

even at low operational intensity

S
X

M

M
X

M MEM
[88 SRAM banks]

V
X

M MEM
[88 SRAM banks]

S
X

M

M
X

M

Groq Public 61

Argonne Leadership Computing Facility62

GroqChip

The pu rpo se-bui lt

Language Processing

Uni t Inferenc e Engine

GroqNode
GroqCard

GroqRack

Del l Servers

☰ EXCEPTIONAL.

a t sequential processing. The LPU Inference Engine i s

designed to scale and i s more po wer -eff i cien t, with greater

performance, than a GPU f or AI appli cations l i ke LLMs.

© 2024 Groq, Inc. | Groq AI Workshop Groq Public 62

Argonne Leadership Computing Facility63
© 2024 Groq, Inc. | Groq AI Workshop Groq Public

GroqWare

Suite DIVERSE SUITE OF

DEVELOPMENT TOOLS

Out-of-Box
Groq Compiler provides

out-of-box support for standard
Deep Learning models

Productivity

Tools

+
GroqView Profiler provides

visualization of the chip’s compute
and memory usage at compile time

GroqFlow Tool Chain enables a

single line of Pytorch or TensorFlow
code to import and transform
models through a fully automated

tool chain to run on Groq hardware

Groq Assembler

Groq Runt ime

Groq Hardware
(GroqCard, GroqNode, GroqRack)

G
ro

q
F

lo
w

Groq Compiler

Argonne Leadership Computing Facility64
© 2024 Groq, Inc. | Groq AI Workshop Groq Public

General Groq LLM Development Flow

Modify PyTorch Model

Export ONNX Model

Convert ONNX Model

from fp32 to fp8/fp16

Decoder Partition

Groq Compile!

Multi-node/Multi-rack
Host-Code Invocation

Argonne Leadership Computing Facility65

Groq Hands-On

Link to Hands-On Session Material

mailto:https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop/tree/master/aiTestbeds/Groq

Argonne Leadership Computing Facility66

Thank You

• This research was funded in part and used resources of the Argonne Leadership Computing
Facility (ALCF), a DOE Office of Science User Facility supported under Contract DE-AC02-
06CH11357.

• Murali Emani, Varuni Sastry, William Arnold, Krishna Teja Chitty-Venkata, Venkatram
Vishwanath

• Our current AI testbed system vendors – Cerebras, Graphcore, Groq, Intel Habana and
SambaNova.

• Many slides are courtesy of AI Testbed vendors.

Please reach out for further details
Sid Raskar, sraskar@anl.gov

mailto:sraskar@anl.gov

	Default Section
	Slide 1
	Slide 2: AI Testbeds at ALCF
	Slide 3: Motivation
	Slide 4: Motivation
	Slide 5
	Slide 6
	Slide 7: Von Neumann vs spatial architectures
	Slide 8: Spatial reconfigurable architectures
	Slide 9: Spatial reconfigurable architectures
	Slide 10
	Slide 11: Getting Started on ALCF AI Testbed: Apply for a Director’s Discretionary (DD) Allocation Award
	Slide 12: Recent Publications
	Slide 13: Recent Publications

	Cerebras
	Slide 14
	Slide 15: WSE-2 Architecture Basics
	Slide 16: Wafer-Scale Cluster
	Slide 17
	Slide 18: Lowering from Model to Wafer
	Slide 19: cstorch Software Stack
	Slide 20: CS Torch Hands-On
	Slide 21: Cerebras SDK
	Slide 23: From a Programmer’s Perspective
	Slide 24: CSL: Language Basics
	Slide 25: Familiar Features
	Slide 26: Quality of Life Features
	Slide 27: Performance Features
	Slide 28: SDK usage and impact
	Slide 29: CS SDK Hands-On

	Graphcore
	Slide 30
	Slide 31: Graphcore Intelligence Processing Unit (IPU)
	Slide 32
	Slide 33: GRAPHCORE SOFTWARE
	Slide 34: Bulk Synchronous Parallel (BSP)
	Slide 35: Graphcore PyTorch Hands-On
	Slide 36: Poplar software stack
	Slide 37: Programming model
	Slide 38: THE POPLAR GRAPH
	Slide 39: VARIABLES
	Slide 40: VARIABLES
	Slide 41: COMPUTE SETS
	Slide 42: programming model
	Slide 43: THE HOST PROGRAM
	Slide 44: CODELET DEFINITIONS
	Slide 45: BUILDING THE COMPUTE GRAPH
	Slide 46: CREATING CONTROL PROGRAMS
	Slide 47: CREATING THE ENGINE
	Slide 48: Profiling: popvision tools
	Slide 49: Graphcore Poplar Hands-On

	Sambanova
	Slide 50: SambaNova Cardinal SN30 RDU
	Slide 51: Cardinal SN30: Tile
	Slide 52
	Slide 53: SambaNova DataScale SN30-8 System
	Slide 54: Samba Compilation Flow
	Slide 55: Sambaflow Hands-On

	Groq
	Slide 56: Groq LPU Overview
	Slide 57: Groq LPU Building Blocks
	Slide 61: Architecture Empowering Software
	Slide 62: GroqRack™
	Slide 63: GroqWare™ Suite
	Slide 64: General Groq LLM Development Flow
	Slide 65: Groq Hands-On

	Conclusion
	Slide 66: Thank You

