
1
https://www.alcf.anl.gov/events/2024-alcf-hands-hpc-workshop

TAU

Sameer Shende
Research Professor and Director, Performance Research Laboratory
OACISS, U. Oregon
President and Director, ParaTools, Inc.
Track 1, TCS 1404, 4:00 – 5:15pm, Wednesday, October 30, 2024
sameer@cs.uoregon.edu

http://tau.uoregon.edu

ALCF Hands on HPC Workshop 2024

2

Motivation and Challenges

• With growing hardware complexity, it is getting harder to accurately measure and optimize the
performance of our HPC and AI/ML workloads.

• TAU Performance System®:

– Deliver a scalable, portable, performance evaluation toolkit for HPC and AI/ML workloads.

– http://tau.uoregon.edu

• It is getting harder to install our HPC and AI/ML tools.

http://tau.uoregon.edu/

3

Motivation: Improving Productivity

• TAU Performance System®:

– Deliver a scalable, portable, performance evaluation toolkit for HPC and
AI/ML workloads

– http://tau.uoregon.edu

• Extreme-scale Scientific Software Stack (E4S):

– Delivering a modular, interoperable, and deployable software stack

– Deliver expanded and vertically integrated software stacks to achieve full
potential of extreme-scale computing

– Lower barrier to using software technology (ST) products from ECP

– Enable uniform APIs where possible

– https://e4s.io

4

TAU Performance System®

• Versatile profiling and tracing toolkit that supports:

– MPI, DPC++/SYCL (Level Zero), OpenCL, and OpenMP (OpenMP Tools Interface for Target Offload)

• Scalable, portable, performance evaluation toolkit for HPC and AI/ML workloads that supports:

– C++/C/DPC++, Fortran, Python

• Supports PAPI, Likwid for hardware performance counter information

• Instrumentation includes support for Kokkos, MPI, pthread, event-based sampling, GPU runtimes

• A single tool (tau_exec) is used to launch un-instrumented, un-modified binaries

• TAU’s paraprof, pprof, perfexplorer for profile analysis; Vampir, Jumpshot, Perfetto.dev for traces

• http://tau.uoregon.edu

• module load tau

– to load TAU on Sunspot and other ALCF systems

http://tau.uoregon.edu/

5

• How much time is spent in each application routine and outer loops? Within loops, what is the

contribution of each statement? What is the time spent in OpenMP loops? In kernels on

GPUs.

• How many instructions are executed in these code regions?

Floating point, Level 1 and 2 data cache misses, hits, branches taken? What is the extent of

vectorization for loops?

• How much time did my application spend waiting at a barrier in MPI collective operations?

• What is the memory usage of the code? When and where is memory allocated/de-allocated?

Are there any memory leaks? What is the memory footprint of the application? What is the

memory high water mark?

• How much energy does the application use in Joules? What is the peak power usage?

• What are the I/O characteristics of the code? What is the peak read and write bandwidth of

individual calls, total volume?

• How does the application scale? What is the efficiency, runtime breakdown of performance

across different core counts?

Application Performance Engineering

using TAU

6

Using TAU on Polaris at ALCF

% qsub -I -l select=1 -l filesystems=home:eagle -l walltime=1:00:00 -q R2035675 -A ATPESC2024 -X

% module use /soft/modulefiles; module load tau

% wget http://tau.uoregon.edu/workshop_atpesc24.tgz; tar workshop_atpesc24.tgz

% cd workshop; cat README; cd TeaLeaf_CUDA; make; cd bin; ./run.sh; pprof -a

% cd ../../petsc-tau; ./clean.sh; ./compile.sh; ./run.sh

% paraprof --pack petsc_ex19.ppk ; <SCP to AWS>; paraprof petsc_ex19.ppk

• Un-instrumented run with MPI % aprun –n N ./a.out

• Profiling an un-instrumented application (use tau_exec –ebs with any of the following for event-based sampling):

• MPI without GPUs: % aprun –n N tau_exec -ebs ./a.out

• CUDA with MPI: % aprun –n N tau_exec –T cupti,mpi –cupti –ebs ./a.out

Analysis: % pprof –a –m | more; % paraprof (GUI)

Tracing:

• Vampir: % export TAU_TRACE=1; export TAU_TRACE_FORMAT=otf2

% aprun –n N tau_exec [options] ./a.out; vampir traces.otf2 &

• Chrome: % export TAU_TRACE=1; aprun –n N tau_exec ./a.out; tau_treemerge.pl;

% tau_trace2json tau.trc tau.edf –chrome –ignoreatomic –o app.json

Chrome browser: chrome://tracing (Load -> app.json) or https://Perfetto.dev

• Jumpshot: % export TAU_TRACE=1; aprun –n N tau_exec [Options]./a.out;

% tau_treemerge.pl; tau2slog2 tau.trc tau.edf –o app.slog2; jumpshot app.slog2

http://tau.uoregon.edu/workshop_atpesc24.tgz

7

TAU: Quickstart Guide for Sunspot.alcf.anl.gov
% tar xf /soft/perftools/tau/tar/workshop.tgz; cd workshop; cat README

% qsub -I -l select=<N> -l walltime=1:00:00 -A <Project_id>

% module use /soft/modulefiles; module load tau

• Un-instrumented run with MPI % mpirun –np N ./a.out

• Profiling an un-instrumented application (use tau_exec –ebs with any of the following for event-based sampling):

• MPI without GPUs: % mpirun -np N tau_exec -ebs ./a.out

• DPC++/SYCL with MPI: % mpirun –np N tau_exec –T level_zero -l0 ./a.out

• DPC++/SYCL without MPI: % TAU_SET_NODE=0 tau_exec –T level_zero –l0 ./a.out

• OpenMP with MPI: % mpirun -np N tau_exec –T ompt –ompt ./a.out

• OpenMP without MPI: % TAU_SET_NODE=0 tau_exec –T ompt –ompt./a.out

• OpenCL with MPI: % mpirun –np N tau_exec –T level_zero -opencl ./a.out

• OpenCL without MPI: % TAU_SET_NODE=0 tau_exec –T level_zero -opencl ./a.out

Analysis: % pprof –a –m | more; % paraprof (GUI)

Tracing:

• Vampir: % export TAU_TRACE=1; export TAU_TRACE_FORMAT=otf2

% mpirun -np N tau_exec [Options] ./a.out; vampir traces.otf2 &

• Chrome: % export TAU_TRACE=1; mpirun –np N tau_exec ./a.out; tau_treemerge.pl;

% tau_trace2json tau.trc tau.edf –chrome –ignoreatomic –o app.json

Chrome browser: chrome://tracing (Load -> app.json) or https://Perfetto.dev

• Jumpshot: % export TAU_TRACE=1; mpirun –np N tau_exec [Options]./a.out;

% tau_treemerge.pl; tau2slog2 tau.trc tau.edf –o app.slog2; jumpshot app.slog2 &

8

TAU Performance System®

Parallel performance framework and toolkit
Supports all HPC platforms, compilers, runtime system
Provides portable instrumentation, measurement, analysis

9

TAU Performance System®

Instrumentation

• Fortran, C++, C, UPC, Java, Python, Chapel, Spark

• Automatic instrumentation

Measurement and analysis support

• MPI (MVAPICH2, Intel MPI), OpenSHMEM, ARMCI, PGAS, DMAPP

• Supports Intel oneAPI compilers

• pthreads, OpenMP, OMPT interface, hybrid, other thread models

• GPU: OpenCL, oneAPI DPC++/SYCL (Level Zero), OpenACC, Kokkos, RAJA

• Parallel profiling and tracing

Analysis

• Parallel profile analysis (ParaProf), data mining (PerfExplorer)

• Performance database technology (TAUdb)

• 3D profile browser

10

Instrumentation

• Source instrumentation using a preprocessor

– Add timer start/stop calls in a copy of the source code.

– Use Program Database Toolkit (PDT) for parsing source code.

– Requires recompiling the code using TAU shell scripts (tau_cc.sh, tau_f90.sh)

– Selective instrumentation (filter file) can reduce runtime overhead and narrow instrumentation
focus.

• Compiler-based instrumentation

– Use system compiler to add a special flag to insert hooks at routine entry/exit.

– Requires recompiling using TAU compiler scripts (tau_cc.sh, tau_f90.sh…)

• Runtime preloading of TAU’s Dynamic Shared Object (DSO)

– No need to recompile code! Use mpirun tau_exec ./app with options.

Add hooks in the code to perform measurements

11

Configure TAU on Polaris

• ./configure -c++=CC -cc=cc -fortran=ftn -
cuda=/opt/nvidia/hpc_sdk/Linux_x86_64/23.9/cuda/12.2 -pdt=/soft/perftools/tau/pdtoolkit-
3.25.2 -bfd=download -otf=download -dwarf=download -iowrapper -mpi -
papi=/opt/cray/pe/papi/7.0.1.2/ -pthread

• make install –j

Builds craycnl/lib/Makefile.tau-nvidia-papi-mpi-cupti-pdt
and craycnl/lib/shared-nvidia-papi-mpi-cupti-pdt/libTAU.so

• We can build multiple configurations of TAU with PrgEnv-nvhpc and PrgEnv-gnu

Support for MPI and CUDA

12

Configurations of TAU installed on Polaris

module use /soft/modulefiles; module load tau; ls $TAU/Makefile*

/soft/perftools/tau/tau-2.33.2/craycnl/lib/Makefile.tau-gnu-papi-mpi-cupti-pdt

/soft/perftools/tau/tau-2.33.2/craycnl/lib/Makefile.tau-gnu-papi-mpi-pdt

/soft/perftools/tau/tau-2.33.2/craycnl/lib/Makefile.tau-gnu-papi-mpi-pthread-cupti-pdt

/soft/perftools/tau/tau-2.33.2/craycnl/lib/Makefile.tau-gnu-pdt

/soft/perftools/tau/tau-2.33.2/craycnl/lib/Makefile.tau-gnu-tbb-pdt

/soft/perftools/tau/tau-2.33.2/craycnl/lib/Makefile.tau-nvidia-papi-mpi-cupti-pdt

/soft/perftools/tau/tau-2.33.2/craycnl/lib/Makefile.tau-nvidia-papi-mpi-pdt

/soft/perftools/tau/tau-2.33.2/craycnl/lib/Makefile.tau-nvidia-pdt

aprun –n 16 tau_exec –T gnu-papi-mpi-pthread-cupti-pdt –ebs ./a.out

will choose a configuration represented by:

/soft/perftools/tau/tau-2.33.2/craycnl/lib/Makefile.tau-gnu-papi-mpi-pthread-cupti-pdt

13

Using TAU

TAU supports several measurement and thread options
Phase profiling, profiling with hardware counters, MPI library, CUDA…

Each measurement configuration of TAU corresponds to a unique stub makefile and library that is generated
when you configure it

To instrument source code automatically using PDT

Choose an appropriate TAU stub makefile in <arch>/lib:
% module load tau

% export TAU_MAKEFILE=/soft/perftools/tau/tau-2.33.2/craycnl/lib/Makefile.tau-gnu-papi-mpi-pthread-
cupti-pdt

% export TAU_OPTIONS=‘-optVerbose …’ (see tau_compiler.sh)

% export PATH=$TAUDIR/x86_64/bin:$PATH

Use tau_f90.sh, tau_cxx.sh, tau_upc.sh, or tau_cc.sh as F90, C++, UPC, or C compilers respectively:

% mpif90 foo.f90 changes to

% tau_f90.sh foo.f90

Set runtime environment variables, execute application and analyze performance data:
% pprof (for text based profile display)

% paraprof (for GUI)

14

TAU’s Support for Runtime Systems

• MPI
• PMPI profiling interface
• MPI_T tools interface using performance and control variables

• Pthread
• Captures time spent in routines per thread of execution

• OpenMP
• OMPT tools interface to track salient OpenMP runtime events
• Opari source rewriter
• Preloading wrapper OpenMP runtime library when OMPT is not supported

• OpenACC
• OpenACC instrumentation API
• Track data transfers between host and device (per-variable)
• Track time spent in kernels

15

TAU’s Support for Runtime Systems (contd.)

• OpenCL

• OpenCL profiling interface

• Track timings of kernels

• Intel® OneAPI

• Level Zero

• Track time spent in kernels executing on GPU

• Track time spent in OneAPI runtime calls

• Kokkos

• Kokkos profiling API

• Push/pop interface for region, kernel execution interface

• Python

• Python interpreter instrumentation API

• Tracks Python routine transitions as well as Python to C transitions

16

Examples of Multi-Level Instrumentation

• MPI + OpenMP
• MPI_T + PMPI + OMPT may be used to track MPI and OpenMP

• MPI + pthread
• PMPI + pthread interfaces

• MPI + Intel ® oneAPI DPC++/SYCL
• PMPI + Level Zero interfaces
• OpenCL + Python

• OpenCL + Python instrumentation interfaces
• Kokkos + OpenMP

• Kokkos profiling API + OMPT to transparently track events
• Kokkos + pthread + MPI

• Kokkos + pthread wrapper interposition library + PMPI layer
• MPI + OpenCL

• PMPI + OpenCL profiling interfaces

17

Binary instrumentation of libraries: Work in progress

% tau_run a.out –o a.inst

instruments a binary. Other flags –T <tags>, -f <selective instrumentation file>
% tau_run -l /path/to/libhdf5.so.310 –o libhdf5.so.310

instruments a DSO
% tau_exec ./a.out

executes the uninstrumented application with the instrumented shared object.

To use with DyninstAPI 13 on x86_64:
1. Load spack: source spack/share/spack/setup-env.sh
2. Install dyninst: spack install dyninst@13 %gcc@11
3. Configure tau with dyninst:

3.1 spack find -p dyninst boost tbb elfutils
3.2 Copy the paths for each package into the configure line

3.3 ./configure -bfd=download -dyninst=<dir> -tbb=<dir> -boost=<dir> -elf=<dir>; <set paths>; make install

18

Binary instrumentation of libraries: HDF5

19

Using TAU’s Runtime Preloading Tool: tau_exec

Preload a wrapper that intercepts the runtime system call and substitutes with another

MPI

OpenMP

POSIX I/O

Memory allocation/deallocation routines

Wrapper library for an external package

No modification to the binary executable!

Enable other TAU options (communication matrix, OTF2, event-based sampling)

20

TAU Execution Command (tau_exec)
Uninstrumented execution

% mpirun -np 256 ./a.out

Track GPU operations

% mpirun –np 256 tau_exec –l0 ./a.out

% mpirun –np 256 tau_exec –opencl ./a.out

% mpirun –np 256 tau_exec –openacc ./a.out

Track MPI performance

% mpirun -np 256 tau_exec ./a.out

Track I/O, and MPI performance (MPI enabled by default)

% mpirun -np 256 tau_exec -io ./a.out

Track OpenMP and MPI execution (using OMPT for Intel v19+ or Clang 8+)

% export TAU_OMPT_SUPPORT_LEVEL=full;

% mpirun –np 256 tau_exec –T ompt,mpi -ompt ./a.out

Track memory operations

% export TAU_TRACK_MEMORY_LEAKS=1

% mpirun –np 256 tau_exec –memory_debug ./a.out (bounds check)

Use event based sampling (compile with –g)

% mpirun –np 256 tau_exec –ebs ./a.out

Also export TAU_METRICS=TIME,PAPI_L1_DCM… -ebs_resolution=<file | function | line>

21

Profiling and Tracing

• Tracing shows you when the events take

place on a timeline

Profiling Tracing

• Profiling shows you how much

(total) time was spent in each routine

• Profiling and tracing

Profiling shows you how much (total) time was spent in each routine

Tracing shows you when the events take place on a timeline

22

Inclusive vs. Exclusive values
■ Inclusive

■ Information of all sub-elements aggregated into single value

■ Exclusive
■ Information cannot be subdivided further

Inclusive Exclusive

int foo()
{
int a;
a = 1 + 1;

bar();

a = a + 1;
return a;

}

23

How much data do you want?

Limited

Profile

Flat

Profile

Loop

Profile

Callsite

Profile

Callpath

Profile

Trace

O(KB) O(TB)

24

Performance Data Measurement

Direct via Probes Indirect via Sampling

• Exact

measurement

• Fine-grain control

• Calls inserted

into code

• No code modification

• Minimal effort

• Relies on debug

symbols (-g)

Call START(‘potential’)

// code

Call STOP(‘potential’)

25

Sampling

Running program is periodically interrupted to take

measurement

Timer interrupt, OS signal, or HWC overflow

Service routine examines return-address stack

Addresses are mapped to routines using symbol

table information

Statistical inference of program behavior

Not very detailed information on highly volatile

metrics

Requires long-running applications

Works with unmodified executables

Time

main foo(0) foo(1) foo(2) int main()
{
int i;

for (i=0; i < 3; i++)
foo(i);

return 0;
}

void foo(int i)
{

if (i > 0)
foo(i – 1);

}

Measurement

t9t7t6t5t4t1 t2 t3 t8

26

Instrumentation

Measurement code is inserted such that every event of

interest is captured directly

Can be done in various ways

Advantage:

Much more detailed information

Disadvantage:

Processing of source-code / executable

necessary

Large relative overheads for small functions

Time

Measurement int main()
{
int i;

for (i=0; i < 3; i++)
foo(i);

return 0;
}

void foo(int i)
{

if (i > 0)
foo(i – 1);

}

Time

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11t12t13 t14

main foo(0) foo(1) foo(2)

TAU_START(“main”);

TAU_STOP(“main”);

TAU_START(“foo”);

TAU_STOP(“foo”);

27

Inclusive Measurements

28

Exclusive Time

29

Environment Variable Default Description

TAU_TRACE 0 Setting to 1 turns on tracing

TAU_CALLPATH 0 Setting to 1 turns on callpath profiling

TAU_TRACK_MEMORY_FOOTPRINT 0 Setting to 1 turns on tracking memory usage by sampling periodically the resident set size and high-water mark of memory
usage

TAU_TRACK_POWER 0 Tracks power usage by sampling periodically.

TAU_CALLPATH_DEPTH 2 Specifies depth of callpath. Setting to 0 generates no callpath or routine information, setting to 1 generates flat profile and
context events have just parent information (e.g., Heap Entry: foo)

TAU_SAMPLING 1 Setting to 1 enables event-based sampling.

TAU_TRACK_SIGNALS 0 Setting to 1 generate debugging callstack info when a program crashes

TAU_COMM_MATRIX 0 Setting to 1 generates communication matrix display using context events

TAU_THROTTLE 1 Setting to 0 turns off throttling. Throttles instrumentation in lightweight routines that are called frequently

TAU_THROTTLE_NUMCALLS 100000 Specifies the number of calls before testing for throttling

TAU_THROTTLE_PERCALL 10 Specifies value in microseconds. Throttle a routine if it is called over 100000 times and takes less than 10 usec of inclusive
time per call

TAU_CALLSITE 0 Setting to 1 enables callsite profiling that shows where an instrumented function was called. Also compatible with tracing.

TAU_PROFILE_FORMAT Profile Setting to “merged” generates a single file. “snapshot” generates xml format

TAU_METRICS TIME Setting to a comma separated list generates other metrics. (e.g.,
ENERGY,TIME,P_VIRTUAL_TIME,PAPI_FP_INS,PAPI_NATIVE_<event>:<subevent>)

TAU’s Runtime Environment Variables

30

Tracing: Jumpshot (ships with TAU)

31

Tracing: Chrome Browser

% export TAU_TRACE=1

% mpirun –np 256 tau_exec ./a.out
% tau_treemerge.pl; tau_trace2json tau.trc tau.edf –chrome –ignoreatomic –o app.json

Chrome browser: chrome://tracing (Load -> app.json)

32

Perfetto.dev

33

Vampir [TU Dresden] Timeline: Kokkos

% export TAU_TRACE=1; export TAU_TRACE_FORMAT=otf2

% tau_exec -T ompt –ompt ./a.out
% vampir traces.otf2 &

34

ParaProf Profile Browser

% paraprof

35

ParaProf 3D Profile Browser

36

TAU – ParaProf 3D Visualization

% paraprof app.ppk

Windows -> 3D Visualization -> Bar Plot (right pane)

37

TAU – 3D Communication Window

% export TAU_COMM_MATRIX=1; mpirun … tau_exec ./a.out

% paraprof ; Windows -> 3D Communication Matrix

38

Event Based Sampling (EBS)

% mpirun -n 16 tau_exec –ebs a.out

Uninstrumented!

File: point_solver.F90

Line: 2705

39

Environment Variable Default Description

TAU_TRACE 0 Setting to 1 turns on tracing

TAU_CALLPATH 0 Setting to 1 turns on callpath profiling

TAU_TRACK_MEMORY_FOOTPRINT 0 Setting to 1 turns on tracking memory usage by sampling periodically the resident set size and high water mark of memory
usage

TAU_TRACK_POWER 0 Tracks power usage by sampling periodically.

TAU_CALLPATH_DEPTH 2 Specifies depth of callpath. Setting to 0 generates no callpath or routine information, setting to 1 generates flat profile and
context events have just parent information (e.g., Heap Entry: foo)

TAU_SAMPLING 1 Setting to 1 enables event-based sampling.

TAU_TRACK_SIGNALS 0 Setting to 1 generate debugging callstack info when a program crashes

TAU_COMM_MATRIX 0 Setting to 1 generates communication matrix display using context events

TAU_THROTTLE 1 Setting to 0 turns off throttling. Throttles instrumentation in lightweight routines that are called frequently

TAU_THROTTLE_NUMCALLS 100000 Specifies the number of calls before testing for throttling

TAU_THROTTLE_PERCALL 10 Specifies value in microseconds. Throttle a routine if it is called over 100000 times and takes less than 10 usec of inclusive
time per call

TAU_CALLSITE 0 Setting to 1 enables callsite profiling that shows where an instrumented function was called. Also compatible with tracing.

TAU_PROFILE_FORMAT Profile Setting to “merged” generates a single file. “snapshot” generates xml format

TAU_METRICS TIME Setting to a comma separated list generates other metrics. (e.g.,
ENERGY,TIME,P_VIRTUAL_TIME,PAPI_FP_INS,PAPI_NATIVE_<event>:<subevent>)

TAU’s Runtime Environment Variables

40

Environment Variable Default Description

TAU_TRACE 0 Setting to 1 turns on tracing

TAU_TRACE_FORMAT Default Setting to “otf2” turns on TAU’s native OTF2 trace generation (configure with –otf=download)

TAU_EBS_UNWIND 0 Setting to 1 turns on unwinding the callstack during sampling (use with tau_exec –ebs or TAU_SAMPLING=1)

TAU_EBS_RESOLUTION line Setting to “function” or “file” changes the sampling resolution to function or file level respectively.

TAU_TRACK_LOAD 0 Setting to 1 tracks system load on the node

TAU_SELECT_FILE Default Setting to a file name, enables selective instrumentation based on exclude/include lists specified in the file.

TAU_OMPT_SUPPORT_LEVEL basic Setting to “full” improves resolution of OMPT TR6 regions on threads 1.. N-1. Also, “lowoverhead” option is
available.

TAU_OMPT_RESOLVE_ADDRESS_EAGERLY 1 Setting to 1 is necessary for event based sampling to resolve addresses with OMPT. Setting to 0 allows the
user to do offline address translation.

Runtime Environment Variables

41

Environment Variable Default Description

TAU_TRACK_MEMORY_LEAKS 0 Tracks allocates that were not de-allocated (needs –optMemDbg or tau_exec –memory)

TAU_EBS_SOURCE TIME Allows using PAPI hardware counters for periodic interrupts for EBS (e.g., TAU_EBS_SOURCE=PAPI_TOT_INS
when TAU_SAMPLING=1)

TAU_EBS_PERIOD 100000 Specifies the overflow count for interrupts

TAU_MEMDBG_ALLOC_MIN/MAX 0 Byte size minimum and maximum subject to bounds checking (used with TAU_MEMDBG_PROTECT_*)

TAU_MEMDBG_OVERHEAD 0 Specifies the number of bytes for TAU’s memory overhead for memory debugging.

TAU_MEMDBG_PROTECT_BELOW/ABOVE 0 Setting to 1 enables tracking runtime bounds checking below or above the array bounds (requires –
optMemDbg while building or tau_exec –memory)

TAU_MEMDBG_ZERO_MALLOC 0 Setting to 1 enables tracking zero byte allocations as invalid memory allocations.

TAU_MEMDBG_PROTECT_FREE 0 Setting to 1 detects invalid accesses to deallocated memory that should not be referenced until it is
reallocated (requires –optMemDbg or tau_exec –memory)

TAU_MEMDBG_ATTEMPT_CONTINUE 0 Setting to 1 allows TAU to record and continue execution when a memory error occurs at runtime.

TAU_MEMDBG_FILL_GAP Undefined Initial value for gap bytes

TAU_MEMDBG_ALINGMENT Sizeof(int) Byte alignment for memory allocations

TAU_EVENT_THRESHOLD 0.5 Define a threshold value (e.g., .25 is 25%) to trigger marker events for min/max

Runtime Environment Variables

42

Download TAU from U. Oregon

http://tau.uoregon.edu

https://e4s.io [TAU in Docker/Singularity containers]

for more information

Free download, open source, BSD license

http://tau.uoregon.edu/
https://e4s.io/

43

What are containers

• A lightweight collection of executable software that encapsulates
everything needed to run a single specific task

– Minus the OS kernel

– Based on Linux only

• Processes and all user-level software is isolated

• Creates a portable* software ecosystem

• Think chroot on steroids

• Docker most common tool today

– Available on all major platforms

– Widely used in industry

– Integrated container registry via Dockerhub

44

Hypervisors and Containers

• Type 1 hypervisors insert layer below host OS

• Type 2 hypervisors work as or within the host OS

• Containers do not abstract hardware, instead provide “enhanced
chroot” to create isolated environment

• Location of abstraction can have impact on performance

• All enable custom software stacks on existing hardware

45

E4S: Extreme-scale Scientific Software Stack
• E4S is a community effort to provide open-source software packages for developing, deploying and running scientific applications on HPC

platforms.

• E4S has built a comprehensive, coherent, curated software stack based on Spack [https://spack.io] that enables application developers to

productively develop highly parallel applications that effectively target diverse exascale architectures.

• E4S provides a curated, Spack based software distribution of 120+ HPC (OpenFOAM, Gromacs, Nek5000, LAMMPS), EDA (e.g., Xyce), and

AI/ML packages (e.g., TensorFlow, PyTorch, TorchBraid, Scikit-Learn, Pandas, JAX, Horovod, and LBANN).

• With E4S Spack binary build caches, E4S supports both bare-metal and containerized deployment for GPU based platforms.

• X86_64, ppc64le (IBM Power 10), aarch64 (ARM64) with support for GPUs from NVIDIA, AMD, and Intel

• HPC and AI/ML packages are optimized for GPUs and CPUs.

• Container images on DockerHub and E4S website of pre-built binaries of ECP ST products.

• Base images and full featured containers (with GPU support) and DOE LLVM containers.

• Commercial support for E4S through ParaTools, Inc. for installation, maintaining an issue tracker, and ECP AD engagement.

• E4S for commercial cloud platforms: Adaptive Computing’s ODDC with ParaTools Pro for E4S image with support for AWS.

• https://adaptivecomputing.com

• e4s-chain-spack.sh to chain two Spack instances allows us to install new packages in home directory and use other tools.

• e4s-cl container launch tool allows binary distribution of applications by swapping MPI in the containerized app w/ system MPI.

• e4s-alc is an à la carte tool to customize container images by adding system and Spack packages to an existing image.

https://e4s.io

https://adaptivecomputing.com/

46

E4S Community Policies Version 1
A Commitment to Quality Improvement

• Will serve as membership criteria for E4S

– Membership is not required for inclusion in E4S

– Also includes forward-looking draft policies

• Purpose: enhance sustainability and
interoperability

• Topics cover building, testing, documentation,
accessibility, error handling and more

• Multi-year effort led by SDK team

– Included representation from across ST

– Multiple rounds of feedback incorporated from ST
leadership and membership

• Modeled after xSDK Community Policies

• https://e4s-project.github.io/policies.html

https://e4s-project.github.io/policies.html

47

Spack

• E4S uses the Spack package manager for software delivery

• Spack provides the ability to specify versions of software packages that are and are not
interoperable.

• Spack is a build layer for not only E4S software, but also a large collection of software tools
and libraries outside of ECP ST.

• Spack supports achieving and maintaining interoperability between ST software packages.

48

Managing large software installations: E4S

• Red boxes are the packages in it (about 100)

• Blue boxes are what else you need to build it (about 600)

• It’s infeasible to build and integrate all of this manually

49

• Each expression is a spec for a particular configuration

– Each clause adds a constraint to the spec

– Constraints are optional – specify only what you need.

– Customize install on the command line!

• Spec syntax is recursive

– Full control over the combinatorial build space

Spack enables software distribution for HPC

$ spack install tau unconstrained

$ spack install tau@2.33.2 @ custom version

$ spack install tau@2.33.2 %gcc@11.2.0 % custom compiler

$ spack install tau@2.33.2 %gcc@11.2.0 +mpi+python+pthreads +/- build option

$ spack install tau@2.33.2 %gcc@11.2.0 +mpi ^mvapich2@2.3~wrapperrpath ^ dependency information

github.com/spack/spack

$ git clone https://github.com/spack/spack
$ source spack/share/spack/setup-env.sh
$ spack compiler find
$ spack external find

No installation required: clone and go

50

• Spack simplifies HPC software for:

– Users

– Developers

– Cluster installations

– The largest HPC facilities

• Spack is central to ECP’s software strategy

– Enable software reuse for developers and users

– Allow the facilities to consume the entire ECP stack

• The roadmap is packed with new features:

– Building the ECP software distribution

– Better workflows for building containers

– Stacks for facilities

– Chains for rapid dev workflow

– Optimized binaries

– Better dependency resolution

The Spack community is growing rapidly

@spackpm

github.com/spack/spack

Visit spack.io

51

Download E4S 24.05 Container for Intel oneAPI: Docker or Singularity

https://e4s.io

52

E4S base container images allow users to customize their containers

https://e4s.io

• Intel oneAPI

53

e4s-alc: a new tool to customize container images. Version 1.0.2

https://github.com/E4S-Project/e4s-alc

Add to a base image:

• Spack packages

• OS packages

• Tarballs

• Can create a Dockerfile

• Can create Singularity

definition file

54

E4S 24.05 oneAPI release on Dockerhub

docker pull ecpe4s/e4s-oneapi

55

Using E4S on Cloud Platforms

56

Considerations while deploying HPC/AI workloads to the cloud

• Which cloud provider?

• AWS, OCI, GCP, Azure, …

• Why not all?

• HPC and AI/ML workloads need low latency, high bandwidth

• Which MPI?

• Which image?

• Base Ubuntu without HPC tools or libraries? Too steep a learning curve

• Provisioning and building the image on different cloud providers

• Command line interfaces can be cumbersome to use

• Bursting to the cloud from on-prem clusters using batch submission scripts?

57

Key considerations for cloud-based deployment for E4S

• MPI - the core inter-node communication library has several implementations

– Intel MPI, MVAPICH2-X, OpenMPI

– Interfacing MPI with the job scheduling package (MOAB, Torque, SLURM)

• Cloud providers have different inter-node network adapters:

– Elastic Fabric Adapter (EFA) on AWS

– Infiniband on Azure

– Mellanox Connect-X 5 Ethernet (ROCE) on Oracle Cloud Infrastructure (OCI)

– IPU on Google Cloud (GCP)

• Intra-node communication with XPMEM (driver and kernel module support is critical)

• GPU Direct Async (GDR) support for communication between GPUs in MVPICH-Plus release

• ParaTools, Inc. building E4S optimized with MVAPICH-Plus for AWS, OCI, GCP, and Azure

• Using Adaptive Computing’s ODDC interface to launch E4S jobs on multiple cloud providers!

58

Adaptive Computing’s ODDC with ParaTools Pro for E4S

59

ParaTools Pro for E4S on AWS Marketplace

60

Choosing an instance on AWS to run the image

61

ParaTools Pro for E4STM on Google Cloud Marketplace

https://console.cloud.google.com/marketplace/product/paratools-public/paratools-pro-for-e4s-on-oddc-amd64

https://console.cloud.google.com/marketplace/product/paratools-public/paratools-pro-for-e4s-on-oddc-amd64

62

E4S Exercise:
TAU

63

Using ParaTools Pro for E4S image on AWS with Adaptive Computing’s On-
Demand Data Center (ODDC)

STEP 1: Click on Training tab at:
https://paratools.adaptivecomputing.com

Firefox recommended.

https://paratools.adaptivecomputing.com/

64

Adaptive Computing’s ODDC: Go to Training session tab
and enter email and 11090 as session id

Click here

https://paratools.adaptivecomputing.com

65

Adaptive Computing’s ODDC: Login with session code

Click on

Training Session

Enter email

and session
Code 11090

66

Launch VNC Viewer from ODDC’s Configuration Tab

Click here

67

Launch VNC Viewer from ODDC and allow popups

Click here

68

Remote Desktop from the ParaTools Pro for E4STM image
on AWS and GCP

Click here

69

Launch Terminal in Remote Desktop

Click here

70

To increase font size right click and choose preferences

71

Choose font size after clicking Custom Font for Terminal

72

Spack Package Manager

73

CoMD: TAU with event-based sampling (EBS)

% cd examples/CoMD/src-mpi

% make; cd ../bin

74

CoMD: TAU with event-based sampling (EBS)

% qsub tau.qsub

% qstat –u $USER

75

CoMD: TAU’s paraprof visualizer

% paraprof &

76

CoMD: TAU’s paraprof visualizer

Right click on Node 0, Thread 0
and choose Show Thread
Statistics Table (third option)

77

TAU’s ParaProf Profile Browser: Thread Statistics Table

Click on columns to sort (e.g.,
Inclusive)

Expand nodes and right click on a
sample and

Select “Show Source Code”

78

TAU’s ParaProf Profile Browser: Source Code Browser

The application spent

4.8 seconds at line 198 in
ljForce.c in MPI rank 0. TAU
collected 160 samples at this line
of code.

It is within five levels of for
loops!

There was no change to
source code,
build system, or the
application binary!

79

TAU Exercise #2:
Instrumenting PETSc application using TAU’s

Perfstubs interface

80

Launching the binary using tau_exec –ebs

cd ~/examples/petsc-cpu
vi ex50.qsub

Add tau_exec –ebs
before ./ex50 in the launch
command. Save the file.

81

TAU’s ParaProf Profile Browser: Source Code Browser

qsub ex50.qsub

qstat –u $USER

After it completes

ls

paraprof &

82

TAU’s paraprof browser with PETSc performance profile

paraprof

Choose
Show thread statistics table by
right clicking on
node 0, thread 0.

83

Using pprof: TAU’s text based profile browser

pprof –a | more

Here we see PETSc timers
translated into TAU timers using
the Perfstubs library.

No modification to the source,
build system, or the binary!

84

Generating callpath profiles

Edit ex50.qsub

add
export TAU_CALLPATH=1

export TAU_CALLPATH_DEPTH=100

export TAU_PROFILE_FORMAT=merged

mpirun …

% qsub ex50.qsub

% paraprof tauprofile.xml

85

Generating Traces
cd ~/examples/petsc-cuda; vi ex50.qsub
Comment out previous CALLPATH options

export TAU_TRACE=1

% qsub ex50.qsub

% tau_treemerge.pl

% tau_trace2json tau.trc tau.edf –chrome \
-ignoreatomic –o ex50.json

Open Firefox, load Perfetto.dev

trace visualizer and open ex50.json
wasd keys to widen/shrink/left/right

86

Using TAU on Polaris at ALCF
% qsub -I -l select=1 -l filesystems=home:eagle -l walltime=1:00:00 -q R2035675 -A ATPESC2024 -X

% module use /soft/modulefiles; module load tau

% wget http://tau.uoregon.edu/workshop_atpesc24.tgz; tar xf workshop_atpesc24.tgz

% cd workshop; cat README; cd TeaLeaf_CUDA; make; cd bin; ./run.sh

% cd ../../petsc-tau; ./clean.sh; ./compile.sh; ./run.sh

% paraprof --pack petsc_ex19.ppk ; <SCP to AWS>; paraprof petsc_ex19.ppk

Un-instrumented run with MPI % aprun –n N ./a.out

Profiling an un-instrumented application (use tau_exec –ebs with any of the following for event-based sampling):

MPI without GPUs: % aprun –n N tau_exec -ebs ./a.out

CUDA with MPI: % aprun –n N tau_exec –T cupti,mpi –cupti –ebs ./a.out

Analysis: % pprof –a –m | more; % paraprof (GUI)

Tracing:
Vampir: % export TAU_TRACE=1; export TAU_TRACE_FORMAT=otf2

% aprun –n N tau_exec [options] ./a.out; vampir traces.otf2 &

Chrome: % export TAU_TRACE=1; aprun –n N tau_exec ./a.out; tau_treemerge.pl;

% tau_trace2json tau.trc tau.edf –chrome –ignoreatomic –o app.json

Chrome browser: chrome://tracing (Load -> app.json) or https://Perfetto.dev

Jumpshot: % export TAU_TRACE=1; aprun –n N tau_exec [Options]./a.out;

% tau_treemerge.pl; tau2slog2 tau.trc tau.edf –o app.slog2; jumpshot app.slog2

87

TAU Exercise #3:
paraprof 3D display

88

TAU paraprof

cd ~/examples/tau

paraprof demo.ppk &

Choose 3D Visualization

89

TAU paraprof 3D visualization

Choose Bar Plot and move

Function and Thread
Sliders

First mouse button to rotate
Second mouse button to
translate (left to right)

Scroll wheel (or +/- keys) to
zoom in.

Try Scatter plot next

90

TAU paraprof: 3D Scatter Plot

91

Exercise #7

E4S: Extreme-scale
Scientific Software

Stack

92

Spack package manager [https://spack.io]

spack find –x

spack find

93

VisIt visualizer

cd ~/examples/visit

visit &

94

VisIt visualizer

Open example.silo

95

VisIt visualizer

Add Pseudocolor ->
Pressure

96

VisIt visualizer

Add Pseudocolor ->
Pressure
Click Draw
Rotate image

97

VisIt visualizer

Add Operators ->
Isosurface
Click Draw
Rotate image

98

Reference

99

Installing and Configuring TAU

•Installing PDT:
– wget tau.uoregon.edu/pdt_lite.tgz

– ./configure –prefix=<dir>; make ; make install

•Installing TAU:
– wget tau.uoregon.edu/tau.tgz; tar zxf tau.tgz; cd tau-2.<ver>

– wget http://tau.uoregon.edu/ext.tgz ; tar xf ext.tgz

– ./configure -bfd=download -pdt=<dir> -papi=<dir> -mpi
–pthread –c++=mpicxx –cc=mpicc –fortran=mpif90
–dwarf=download –unwind=download –otf=download
–iowrapper –papi=<dir>

– make install

•Using TAU for source instrumentation (not needed with tau_exec):
– export TAU_MAKEFILE=<taudir>/x86_64/lib/Makefile.tau-<TAGS>

– make CC=tau_cc.sh CXX=tau_cxx.sh F90=tau_f90.sh

100

Compile-Time Options

•Optional parameters for the TAU_OPTIONS environment variable:
% tau_compiler.sh

-optVerbose Turn on verbose debugging messages

-optCompInst Use compiler based instrumentation

-optNoCompInst Do not revert to compiler instrumentation if source
instrumentation fails.

-optTrackIO Wrap POSIX I/O call and calculates vol/bw of I/O operations
(Requires TAU to be configured with –iowrapper)

-optTrackGOMP Enable tracking GNU OpenMP runtime layer (used without –opari)

-optMemDbg Enable runtime bounds checking (see TAU_MEMDBG_* env vars)

-optKeepFiles Does not remove intermediate .pdb and .inst.* files

-optPreProcess Preprocess sources (OpenMP, Fortran) before instrumentation

-optTauSelectFile=”<file>" Specify selective instrumentation file for tau_instrumentor

-optTauWrapFile=”<file>" Specify path to link_options.tau generated by tau_gen_wrapper

-optHeaderInst Enable Instrumentation of headers

-optTrackUPCR Track UPC runtime layer routines (used with tau_upc.sh)

-optLinking="" Options passed to the linker. Typically
$(TAU_MPI_FLIBS) $(TAU_LIBS) $(TAU_CXXLIBS)

-optCompile="" Options passed to the compiler. Typically
$(TAU_MPI_INCLUDE) $(TAU_INCLUDE)

$(TAU_DEFS)

-optPdtF95Opts="" Add options for Fortran parser in PDT (f95parse/gfparse) …

101

Compile-Time Options (contd.)

•Optional parameters for the TAU_OPTIONS environment variable:
% tau_compiler.sh

-optShared Use TAU’s shared library (libTAU.so) instead of static library
(default)

-optPdtCxxOpts=“” Options for C++ parser in PDT (cxxparse).

-optPdtF90Parser=“” Specify a different Fortran parser

-optPdtCleanscapeParser Specify the Cleanscape Fortran parser instead of GNU gfparser

-optTau=“” Specify options to the tau_instrumentor

-optTrackDMAPP Enable instrumentation of low-level DMAPP API calls on Cray

-optTrackPthread Enable instrumentation of pthread calls

See tau_compiler.sh for a full list of TAU_OPTIONS.

…

102

Environment Variable Default Description

TAU_TRACE 0 Setting to 1 turns on tracing

TAU_CALLPATH 0 Setting to 1 turns on callpath profiling

TAU_TRACK_MEMORY_FOO
TPRINT

0 Setting to 1 turns on tracking memory usage by sampling periodically the resident set size
and high water mark of memory usage

TAU_TRACK_POWER 0 Tracks power usage by sampling periodically.

TAU_CALLPATH_DEPTH 2 Specifies depth of callpath. Setting to 0 generates no callpath or routine information,
setting to 1 generates flat profile and context events have just parent information (e.g.,
Heap Entry: foo)

TAU_SAMPLING 1 Setting to 1 enables event-based sampling.

TAU_TRACK_SIGNALS 0 Setting to 1 generate debugging callstack info when a program crashes

TAU_COMM_MATRIX 0 Setting to 1 generates communication matrix display using context events

TAU_THROTTLE 1 Setting to 0 turns off throttling. Throttles instrumentation in lightweight routines that are
called frequently

TAU_THROTTLE_NUMCALLS 100000 Specifies the number of calls before testing for throttling

TAU_THROTTLE_PERCALL 10 Specifies value in microseconds. Throttle a routine if it is called over 100000 times and
takes less than 10 usec of inclusive time per call

TAU_CALLSITE 0 Setting to 1 enables callsite profiling that shows where an instrumented function was
called. Also compatible with tracing.

TAU_PROFILE_FORMAT Profile Setting to “merged” generates a single file. “snapshot” generates xml format

TAU_METRICS TIME Setting to a comma separated list generates other metrics. (e.g.,
ENERGY,TIME,P_VIRTUAL_TIME,PAPI_FP_INS,PAPI_NATIVE_<event>:<subevent>)

TAU’s Runtime Environment Variables

103

Environment Variable Default Description

TAU_TRACE 0 Setting to 1 turns on tracing

TAU_TRACE_FORMAT Default Setting to “otf2” turns on TAU’s native OTF2 trace generation (configure with –
otf=download)

TAU_EBS_UNWIND 0 Setting to 1 turns on unwinding the callstack during sampling (use with tau_exec –ebs
or TAU_SAMPLING=1)

TAU_EBS_RESOLUTION line Setting to “function” or “file” changes the sampling resolution to function or file level
respectively.

TAU_TRACK_LOAD 0 Setting to 1 tracks system load on the node

TAU_SELECT_FILE Default Setting to a file name, enables selective instrumentation based on exclude/include
lists specified in the file.

TAU_OMPT_SUPPORT_LEVEL basic Setting to “full” improves resolution of OMPT TR6 regions on threads 1.. N-1. Also,
“lowoverhead” option is available.

TAU_OMPT_RESOLVE_ADDRESS_
EAGERLY

1 Setting to 1 is necessary for event based sampling to resolve addresses with OMPT.
Setting to 0 allows the user to do offline address translation.

Runtime Environment Variables

104

Environment Variable Default Description

TAU_TRACK_MEMORY_LEAKS 0 Tracks allocates that were not de-allocated (needs –optMemDbg or tau_exec
–memory)

TAU_EBS_SOURCE TIME Allows using PAPI hardware counters for periodic interrupts for EBS (e.g.,
TAU_EBS_SOURCE=PAPI_TOT_INS when TAU_SAMPLING=1)

TAU_EBS_PERIOD 100000 Specifies the overflow count for interrupts

TAU_MEMDBG_ALLOC_MIN/MAX 0 Byte size minimum and maximum subject to bounds checking (used with
TAU_MEMDBG_PROTECT_*)

TAU_MEMDBG_OVERHEAD 0 Specifies the number of bytes for TAU’s memory overhead for memory
debugging.

TAU_MEMDBG_PROTECT_BELOW/AB
OVE

0 Setting to 1 enables tracking runtime bounds checking below or above the
array bounds (requires –optMemDbg while building or tau_exec –memory)

TAU_MEMDBG_ZERO_MALLOC 0 Setting to 1 enables tracking zero byte allocations as invalid memory
allocations.

TAU_MEMDBG_PROTECT_FREE 0 Setting to 1 detects invalid accesses to deallocated memory that should not
be referenced until it is reallocated (requires –optMemDbg or tau_exec –
memory)

TAU_MEMDBG_ATTEMPT_CONTINUE 0 Setting to 1 allows TAU to record and continue execution when a memory
error occurs at runtime.

TAU_MEMDBG_FILL_GAP Undefined Initial value for gap bytes

TAU_MEMDBG_ALINGMENT Sizeof(int) Byte alignment for memory allocations

TAU_EVENT_THRESHOLD 0.5 Define a threshold value (e.g., .25 is 25%) to trigger marker events for
min/max

Runtime Environment Variables

105

Performance Research Laboratory, University of Oregon, Eugene

www.uoregon.edu

http://www.uoregon.edu

106

• US Department of Energy (DOE)

– ANL

– Office of Science contracts, ECP

– SciDAC, LBL contracts

– LLNL-LANL-SNL ASC/NNSA contract

– Battelle, PNNL and ORNL contract

• Department of Defense (DoD)

– PETTT, HPCMP

• National Science Foundation (NSF)

– SI2-SSI, Glassbox, E4S Workshop

• NASA

• Intel

• CEA, France

• Partners:

–University of Oregon

–The Ohio State University

–ParaTools, Inc.

–University of Tennessee, Knoxville

–T.U. Dresden, GWT

–Jülich Supercomputing Center

Support Acknowledgements

107

Thank you

This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of
the U.S. Department of Energy’s Office of Science and National Nuclear Security Administration,
responsible for delivering a capable exascale ecosystem, including software, applications, and
hardware technology, to support the nation’s exascale computing imperative.

Thank you to all collaborators in the ECP and broader computational science communities. The
work discussed in this presentation represents creative contributions of many people who are
passionately working toward next-generation computational science.

https://www.exascaleproject.org

https://www.exascaleproject.org/

108

Acknowledgment

This material is based upon work supported by the U.S. Department of Energy, Office of Science,

Office of Advanced Scientific Computing Research (ASCR).

https://science.osti.gov/ascr

https://pesoproject.org

https://ascr-step.org

https://science.osti.gov/ascr
https://www.pesoproject.org/
https://ascr-step.org/

109

	Slide 1: TAU
	Slide 2: Motivation and Challenges
	Slide 3: Motivation: Improving Productivity
	Slide 4: TAU Performance System®
	Slide 5: Application Performance Engineering using TAU
	Slide 6: Using TAU on Polaris at ALCF
	Slide 7: TAU: Quickstart Guide for Sunspot.alcf.anl.gov
	Slide 8: TAU Performance System®
	Slide 9: TAU Performance System®
	Slide 10: Instrumentation
	Slide 11: Configure TAU on Polaris
	Slide 12: Configurations of TAU installed on Polaris
	Slide 13: Using TAU
	Slide 14: TAU’s Support for Runtime Systems
	Slide 15: TAU’s Support for Runtime Systems (contd.)
	Slide 16: Examples of Multi-Level Instrumentation
	Slide 17: Binary instrumentation of libraries: Work in progress
	Slide 18: Binary instrumentation of libraries: HDF5
	Slide 19: Using TAU’s Runtime Preloading Tool: tau_exec
	Slide 20: TAU Execution Command (tau_exec)
	Slide 21: Profiling and Tracing
	Slide 22: Inclusive vs. Exclusive values
	Slide 23: How much data do you want?
	Slide 24: Performance Data Measurement
	Slide 25: Sampling
	Slide 26: Instrumentation
	Slide 27: Inclusive Measurements
	Slide 28: Exclusive Time
	Slide 29: TAU’s Runtime Environment Variables
	Slide 30: Tracing: Jumpshot (ships with TAU)
	Slide 31: Tracing: Chrome Browser
	Slide 32: Perfetto.dev
	Slide 33: Vampir [TU Dresden] Timeline: Kokkos
	Slide 34: ParaProf Profile Browser
	Slide 35: ParaProf 3D Profile Browser
	Slide 36: TAU – ParaProf 3D Visualization
	Slide 37: TAU – 3D Communication Window
	Slide 38: Event Based Sampling (EBS)
	Slide 39: TAU’s Runtime Environment Variables
	Slide 40: Runtime Environment Variables
	Slide 41: Runtime Environment Variables
	Slide 42
	Slide 43: What are containers
	Slide 44: Hypervisors and Containers
	Slide 45: E4S: Extreme-scale Scientific Software Stack
	Slide 46: E4S Community Policies Version 1 A Commitment to Quality Improvement
	Slide 47: Spack
	Slide 48: Managing large software installations: E4S
	Slide 49: Spack enables software distribution for HPC
	Slide 50: The Spack community is growing rapidly
	Slide 51: Download E4S 24.05 Container for Intel oneAPI: Docker or Singularity
	Slide 52: E4S base container images allow users to customize their containers
	Slide 53: e4s-alc: a new tool to customize container images. Version 1.0.2
	Slide 54: E4S 24.05 oneAPI release on Dockerhub
	Slide 55: Using E4S on Cloud Platforms
	Slide 56: Considerations while deploying HPC/AI workloads to the cloud
	Slide 57: Key considerations for cloud-based deployment for E4S
	Slide 58: Adaptive Computing’s ODDC with ParaTools Pro for E4S
	Slide 59: ParaTools Pro for E4S on AWS Marketplace
	Slide 60: Choosing an instance on AWS to run the image
	Slide 61: ParaTools Pro for E4STM on Google Cloud Marketplace
	Slide 62
	Slide 63: Using ParaTools Pro for E4S image on AWS with Adaptive Computing’s On-Demand Data Center (ODDC)
	Slide 64: Adaptive Computing’s ODDC: Go to Training session tab and enter email and 11090 as session id
	Slide 65: Adaptive Computing’s ODDC: Login with session code
	Slide 66: Launch VNC Viewer from ODDC’s Configuration Tab
	Slide 67: Launch VNC Viewer from ODDC and allow popups
	Slide 68: Remote Desktop from the ParaTools Pro for E4STM image on AWS and GCP
	Slide 69: Launch Terminal in Remote Desktop
	Slide 70: To increase font size right click and choose preferences
	Slide 71: Choose font size after clicking Custom Font for Terminal
	Slide 72: Spack Package Manager
	Slide 73: CoMD: TAU with event-based sampling (EBS)
	Slide 74: CoMD: TAU with event-based sampling (EBS)
	Slide 75: CoMD: TAU’s paraprof visualizer
	Slide 76: CoMD: TAU’s paraprof visualizer
	Slide 77: TAU’s ParaProf Profile Browser: Thread Statistics Table
	Slide 78: TAU’s ParaProf Profile Browser: Source Code Browser
	Slide 79
	Slide 80: Launching the binary using tau_exec –ebs
	Slide 81: TAU’s ParaProf Profile Browser: Source Code Browser
	Slide 82: TAU’s paraprof browser with PETSc performance profile
	Slide 83: Using pprof: TAU’s text based profile browser
	Slide 84: Generating callpath profiles
	Slide 85: Generating Traces
	Slide 86: Using TAU on Polaris at ALCF
	Slide 87
	Slide 88: TAU paraprof
	Slide 89: TAU paraprof 3D visualization
	Slide 90: TAU paraprof: 3D Scatter Plot
	Slide 91: Exercise #7
	Slide 92: Spack package manager [https://spack.io]
	Slide 93: VisIt visualizer
	Slide 94: VisIt visualizer
	Slide 95: VisIt visualizer
	Slide 96: VisIt visualizer
	Slide 97: VisIt visualizer
	Slide 98: Reference
	Slide 99: Installing and Configuring TAU
	Slide 100: Compile-Time Options
	Slide 101: Compile-Time Options (contd.)
	Slide 102: TAU’s Runtime Environment Variables
	Slide 103: Runtime Environment Variables
	Slide 104: Runtime Environment Variables
	Slide 105: Performance Research Laboratory, University of Oregon, Eugene
	Slide 106: Support Acknowledgements
	Slide 107: Thank you
	Slide 108: Acknowledgment
	Slide 109

