May 20-22, 2025

▲::↓

INCITE GPU Hackathon

ALCF INCITE GPU Hackathon May 20-22, 2025

On Boarding on Aurora May 6, 2025

Marta García Martínez Computational Scientist Argonne National Laboratory

TOP500 List https://www.top500.org/lists/top500/list/2024/11/

Rank	System	Cores	Rmax (PFlop/s)	Rpeak (PFlop/s)	Power (kW)
1	El Capitan - HPE Cray EX255a, AMD 4th Gen EPYC 24C 1.8GHz, AMD Instinct MI300A, Slingshot-11, TOSS, HPE DOE/NNSA/LLNL United States	11,039,616	1,742.00	2,746.38	29,581
2	Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE Cray OS, HPE DOE/SC/Oak Ridge National Laboratory United States	9,066,176	1,353.00	2,055.72	24,607
3	Aurora - HPE Cray EX - Intel Exascale Compute Blade, Xeon CPU Max 9470 52C 2.4GHz, Intel Data Center GPU Max, Slingshot-11, Intel DOE/SC/Argonne National Laboratory United States	9,264,128	1,012.00	1,980.01	38,698

In production

Monday, January 27th, 2025

#3 in Top500 w/9234 nodes – HPL 1.012 exaFLOPS Max #1 in Top500 w/9500 nodes – HPL-MxP 11.6 exaFLOPS

Aurora

Argonne's exascale supercomputer will leverage several technological innovations to support machine learning and data science workloads alongside traditional modeling and simulation runs.

sustained performance ≥2 Exaflop DP

x^e architecture-based gpu Ponte Vecchio

INTEL XEON SCALABLE PROCESSOR Sapphire Rapids PLATFORM HPE Cray EX

Compute Node

2 Intel[®] Xeon CPU Max Series processors: 64GB HBM on each, 512GB DDR5 each; 6 Intel Data Center GPU Max Series, 128GB on each, RAMBO cache on each; Unified Memory Architecture; 8 Slingshot 11 fabric endpoints

GPU Architecture X^e arch-based "Ponte Vecchio" GPU Tile-based chiplets, HBM stack,

Foveros 3D integration, 7nm

CPU-GPU Interconnect CPU-GPU: PCIe; GPU-GPU: X^e Link

System Interconnect

HPE Slingshot 11, Dragonfly topology with adaptive routing, Peak Injection bandwidth 2.12 PB/s, Peak Bisection bandwidth 0.69 PB/s Network Switch 25.6 Tb/s per switch, from 64–200 Gbs ports (25 GB/s per direction)

High-Performance Storage 230 PB, 31 TB/s, 1024 nodes (DAOS)

Programming Models Intel oneAPI, MPI, OpenMP, C/C++, Fortran, SYCL/DPC++

Node Performance >130 TF

System Size

10,624 nodes, 166 compute racks CPUs: 21,248 GPUs: 63,744

AURORA BEGINNERS GUIDE

https://docs.alcf.anl.gov/aurora/

Known issues: https://docs.alcf.anl.gov/aurora/known-issues/

NOTE

https://github.com/argonne-lcf/ALCFBeginnersGuide

ALCFBeginnersGui	de Public	☆ Edit Pins ▼ ③ Watch 5	▼ ⁹ Fork 15 ▼ ☆ Star 36 ▼			
ੇੇ master → ੈੇ 2 Branch	nes 📀 0 Tags 🛛 Q Go to file	t + <> Code -	About			
👩 colleeneb Update 02_a_	debugger.md 🚥 c	ae2503 · last week 🕓 166 Commits	No description, website, or topics provided.			
aurora	Update 02_a_debugger.md	l last week	C Readme			
🖿 media	correct image suffix	3 months ago	-∿ Activity			
🖿 polaris	dos2unix	4 months ago	☆ 36 stars			
🗅 .gitignore	add 04_AI_frameworks, ren	nove jupyterhub 3 months ago	3 months ago			
🗅 .gitmodules	updates to clean up and cla	arify 10 months ago	Report repository			
README.md	aurora staff photo	3 months ago	Releases			
III README		Ø ∷≣	No releases published Create a new release			
	noro Cuido		Packages			
ALCF Begini	lers Guide		No packages published			
If you are new to using s you. This guide will teac	upercomputers and/or ALCF systems, h you the following:	this is the starting place for	Publish your first package			
bow to login to ALC	F systems		Contributors 12			
- now to login to ALC	how to setup a usable environment on a login node					
 how to setup a usat 	Ũ	how to query the job scheduler				
how to login to ALChow to setup a usathow to query the jol	b scheduler		1 🕀 🕲 🌚 🚱 😱			

https://github.com/argonne-lcf/GettingStarted/tree/incite-hackathon-2025

AURORA CABINETS AT ARGONNE

AURORA NODES NAME CONVENTION

 Correction
 Correction</t

x4100c7s4b0n0 is a single node

x4100c7s4b0n0 == Rack x4100 Chassis c7 Slot s4 Board b0 Node n0

NODE CHARACTERISTICS

NODE CHARACTERISTICS

- 6 GPU Intel Data Center GPU Max Series (#)
- 2 CPU Intel Xeon CPU Max Series (#)
- 768 GPU HBM Memory (GB)
- 19.66 Peak GPU HBM BW (TB/s)
- 128 CPU HBM Memory (GB)
- 2.87 Peak CPU HBM BW (TB/s)
- 1024 CPU DDR5 Memory (GB)
- 0.56 Peak CPU DDR5 BW (TB/s)
- ≥ 130 Peak Node DP FLOPS (TF)
- 200 Max Fabric Injection (GB/s)
- 8 NICs (#)

Intel® Xeon Max Series CPU with HBM

Intel[®] Data Center GPU Max

PHYSICAL HARDWARE

This image shows a deeper dive into the physical hardware from the perspective of how an application might see the compute node. Though not quite correct, we can think of the compute blade as consisting of two sockets, each having a 52-core CPU and 3 GPUs. Each CPU core supports 2 hyperthreads. The GPUs physically consist of two tiles with a fast interconnect and many applications may be benefit by binding processes to individual tiles as indicated by the color assignments (one of many possibilities).

LOGGING IN

ssh <username>@aurora.alcf.anl.gov

You will be prompted for your password, which is a six digit code generated uniquely each time using the MobilePASS+ app or a physical token (if you have one).

<username>@aurora-uan-0012:~>

FILESYSTEM

/home/<username>

Users should use project spaces for large scale storage and software installations. Increases can be requested via support@alcf.anl.gov.

Argonne Leadership Computing Facility es Science & Engineering Community and Outreach About Support Cente ALCF Award Allocations Facility Updates MyALCF Login INCITE 0 Days Ago Maintenance Notice: Grog. Graphcore, SambaNova, a Cerebras: May 5 **Director's Discretionan** Apply for a DD allocatio 0 Days Ago aintenance Notice: MyALC NAIRR Pilot Portal: May 5 0 Days Ago Polaris Upgrade in May 2025 Guides Sign In Help 0 Days Ago Aurora COE Office Hours: Tuesdays at 12 p.m. (CDT) Get Started Account & Project Manage Account Sian U Data Manage 0 Days Ago Suballocation Manageme Services vailable Facility Polices ALCF Training Upcoming Training Event On Demand Video leactivate an account Contact Support If you need further help, email the Help Desk, Ann-Eri Gam-Som 5.0.5-0-gf1337 ופ 🍊

myprojectquotas

MyALCF

TIPS

RESERVATION QUEUE MAY 6-16

NOTE

Polaris will be down for maintenance for parts in May.

GRONK: <u>https://status.alcf.anl.gov/#/polaris</u>

gpu_hack_prio: Special priority queue up to 256 nodes, 2 node max size

E.g. qsub -I -I select=1 -I walltime=00:60:00 -I filesystems=home:flare -A gpu_hack -q gpu_hack_prio

mgarcia@aurora-uan-0009:~/gpu_hack/examples> qsub -I -l select=1 -l walltime=00:60:00 -l filesystems=home:flare -A gpu_hack -q gpu_hack_prio qsub: waiting for job 4673776.aurora-pbs-0001.hostmgmt.cm.aurora.alcf.anl.gov to start qsub: job 4673776.aurora-pbs-0001.hostmgmt.cm.aurora.alcf.anl.gov ready

mgarcia@x4516c2s0b0n0:~>

GETTING TO KNOW THE ENVIRONMENT

ALCF uses <u>Environment Modules</u> to provide users with loadable software packages. This includes compilers, python installations, and other software. Here are some basic commands:

module list

module avail

By default, MODULEPATH only includes system libraries from Intel/HPE. One can include pre-built modules from ALCF staff by adding the path /soft/modulefiles to MODULEFILE using either of these commands:

export MODULEPATH=\$MODULEPATH:/soft/modulefiles # OR module use /soft/modulefiles

Loading modules module load cmake

Using Spack

Spack is an HPC oriented build management system. In this case of this quick introduction, Spack is simply used to offer additional pre-compiled software.

On Aurora, these additional spack packages are made available by default from the /soft/modulefiles area:

module use /soft/modulefiles

OUTPUT

mgarcia@x4516c2s0b0n0:~> module list Currently Loaded Modules: 1) gcc-runtime/13.3.0-ghotoln (H) 7) libiconv/1.17-jjpb4s1 (H) 13) cray-pals/1.4.0 2) gmp/6.3.0-mtokfaw (H) 8) libxml2/2.13.5 14) cray-libpals/1.4.0 3) mpfr/4.2.1-gkcdl5w (H) 9) hwloc/2.11.3-mpich-level-zero 15) xpu-smi/1.2.39 4) mpc/1.3.1-rdrlvs1 (H) 10) yaksa/0.3-7ks5f26 (H) 16) forge/24.1.2 5) gcc/13.3.0 11) mpich/opt/develop-git.6037a7a 6) oneapi/release/2025.0.5 12) libfabric/1.22.0 Where:	mgarcia@x4516c2s0b0n0:~ module load cmake mgarcia@x4516c2s0b0n0:~ module list Currently Loaded Modules: (H) 1) gcc-runtime/13.3.0-ghotoln (H) 7) libiconv/1.17-jjpb4sl (H) 2) gmp/6.3.0-mtokfaw (H) 8) libxml2/2.13.5 14) cray-pals/1.4.0 3) mpfr/4.2.1-gkcd15w (H) 9) hwloc/2.11.3-mpich-level-zero 15) xpu-smi/1.2.39 4) mpc/1.3.1-rdrlvs1 (H) 10) yaksa/0.3-7ks5f26 (H) 5) gcc/13.3.0 11) mpich/opt/develop-git.6037a7a 17) gmake/4.4.1 6) oneapi/release/2025.0.5 12) libfabric/1.22.0 18) cmake/3.30.5
H: Hidden Module	H: Hidden Module

mgarcia@x4516c2s0b0n0:~> module av	vail			
alcf-reframe/alcf-reframe	/soft,	/modulefil	es	
ascent/develop/2025-03-19-c1f63	3e7-openmp	daos_ops/l	base_old_pre_DAOS_15236_advice	
ascent/develop/2025-03-19-c1f63	3e7-sycl (D)	daos_ops/l	base	(D)
bbfft/2022.12.30.003/eng-compil	ler/bbfft	daos_perf,	/base	
chipStar/1.2.1		daos_real	_user/base	
chipStar/latest-math		headers/c	uda/12.0.0	
chipStar/latest-static		jax/0.4.4		
chipStar/testing		jax/0.4.2	5	(D)
codee/2024.4.5		libraries,	/libdrm-devel/2.4.104-1.12	
codee/2025.1		paraview/	paraview-5.13.2	
codee/2025.1.2		tau/modul	epath	
codee/2025.1.3		visit/vis:	it-3.4.2	
codee/2025.2	(D)			
(ont/aurora/24 347 0/snack/u	ified/0 9 2/inst	all/module	files/mpich/develop_git 6037a7a	
/ 0pt/autora/24.34/.0/ spack/c	hdf5_vol_asvnc/1		parallel_netcdf/1 12 3	-3XIII179701eap172023.0.3 ====
adios/1.13.1 adios/2.10.2-cnu	hdf5/1 14 5	•/	patarier netcur/r.rz.0	
adios2/2.10.2 cpu (D)	heffte/2.4.1-cnu		numi/2.2.9	
amrey/24.11-sycl	hvnre/2 33 0-svc	1	$n_{\rm mni} = 12.7$	
boost/1.84.0	launchmon/1.2.0	-	spindle/0.13	
cabana/0.7.0-omp-syc1	mpifileutils/0.1	1.1	stat/develop-git.5aa0d93	
copper/main	netcdf-c/4.9.2		superlu-dist/9.1.0	
darshan-runtime/3.4.6	netcdf-cxx4/4.3.	1 1	umpire/2024.07.0-omp	
fftw/3.3.10	netcdf-fortran/4	.6.1	valarind/3.24.0	
geopm-runtime/3.1.0-omp	netlib-scalapack	/2.2.0		
	,	:		
/opt/aurora/2	24.347.0/spack/un:	ified/0.9.	2/install/modulefiles/Core	
lines 1-29				

USING THE AURORA JOB SCHEDULER: PBS

https://github.com/argonne-lcf/ALCFBeginnersGuide/blob/master/aurora/00_scheduler.md

Aurora uses the PBS scheduler similar to other ALCF systems, such as Polaris. PBS is a third party product that comes with extensive documentation. This is an introduction, not an extensive tutorial so we will only cover some basics.

Running interactively

qsub -I -l select=1 -l walltime=00:60:00 -l filesystems=home:flare -A gpu_hack -q gpu_hack_prio

module load xpu-smi

xpu-smi discovery

Some tests

mkdir /lus/flare/projects/<your_project_name>/gpu_hack/

cp -r /lus/flare/projects/gpu_hack/alcf_training/examples/.

mgarcia@x4516c2s0b0n0:~> ls /lu	us/flare/projects/gpu_hack/alo	cf_training/example	es/
00_hello_world.sh 🥄	01_example_openmp.sh	02_tools_example	HelperScripts
01_example.cpp	01_example_sycl_affinity.sh	04_AI_frameworks	logs
01_example_openmp_affinity.sh	01_example_sycl.cpp	copper_example	
01_example_openmp.cpp	01_example_sycl.sh	daos_example	

chmod u+x 00_hello_world.sh

USING THE AURORA JOB SCHEDULER: PBS

Submit your first job

The more standard method for running a job is to submit it to the scheduler via qsub with a script that will execute your job without you needing to login to the worker nodes. Let's walk through an example.

First we need to create a job script (example: examples/00_hello_world.sh):

mpiexec -n \$GPUS_PER_NODE -ppn \$GPUS_PER_NODE echo Hello World

chmod u+x job_script.sh

qsub job_script.sh

15 Argonne Leadership Computing Facility

You'll notice we can use the #PBS line prefix at the top of our

script to set gsub command line options. We can still use the

command line to override the options in the script.

USING THE AURORA JOB SCHEDULER: PBS

Monitor your job

qstat -u <username>

Without specifying the username we will get a full print out of every job queued and running. This can be overwhelming so using the username reduces the output to jobs for just that username. Adding alias qsme='qstat -u <username>' to your .bashrc is a nice shortcut.

Delete your job

qdel <jobID>

Job output

Any job STDOUT or STDERR output will go into two different files that by default are named:

```
<script_name>.o<pbs-job-id>
<script_name>.e<pbs-job-id>
```

In our example submit script, we specify -o logs/ and -e logs/ so that the files go into the logs/ directory. In that case, the output files are named differently:

logs/\${PBS_JOBID}.ER logs/\${PBS_JOBID}.OU

OUTPUT

mgarcia@x4510	5c2s0b0n0:~> xpu-smi discovery			
Device ID	Device Information			
0	Device Name: Intel(R) Data Center GPU Max 1550 Vendor Name: Intel(R) Corporation SOC UUID: 0000000-0000-0000-e1c3-1c0d8a8e9392 PCI BDF Address: 0000:18:00.0 DRM Device: /dev/dri/card0 Function Type: physical			
	Device Name: Intel(R) Data Center GPU Max 1550 Vendor Name: Intel(R) Corporation SOC UUID: 0000000-0000-0000-4600-d0969a8e940e PCI BDF Address: 0000:42:00.0 DRM Device: /dev/dri/card1 Function Type: physical			
2	Device Name: Intel(R) Data Center GPU Max 1550 Vendor Name: Intel(R) Corporation SOC UUID: 0000000-0000-0000-df0a-686d0813f2f8 PCI BDF Address: 0000:6c:00.0 DRM Device: /dev/dri/card2 Function Type: physical			
3	Device Name: Intel(R) Data Center GPU Max 1550 Vendor Name: Intel(R) Corporation SOC UUID: 00000000-0000-0005-7aa827b18071 PCI BDF Address: 0001:18:00.0 DRM Device: /dev/dri/card3 Function Type: physical	mgarcia@ total 4		
	Device Name: Intel(R) Data Center GPU Max 1550 Vendor Name: Intel(R) Corporation SOC UUID: 0000000-0000-0000-b684-572f3c35f00f PCI BDF Address: 0001:42:00.0 DRM Device: /dev/dri/card4 Function Type: physical	-rw-rr -rw-rr		
5	Device Name: Intel(R) Data Center GPU Max 1550 Vendor Name: Intel(R) Corporation SOC UUID: 0000000-0000-0000-3695-0a03c5be4597 PCI BDF Address: 0001:6c:00.0 DRM Device: /dev/dri/card5 Function Type: physical	mgarcia Hello W Hello W		

Submit a job

mgarcia@x4516c2s0b0n0:~/gpu_hack/My_Tests> qsub _A gpu_hack _q gpu_hack_prio job_script.sh 4673810.aurora-pbs-0001.hostmgmt.cm.aurora.alcf. uni.gov mgarcia@x4516c2s0b0n0:~/gpu_hack/My_Tests> qstat -u mgarcia										
aurora-pbs-0001.hostmgmt.cm.aurora.alcf.anl.gov:										
	••		-				Req'd	Req'd	~	Elap
JOD ID	Username	Queue	Jobname	Sessid	NDS	TSK	Memory	lıme	S	lime
4673776.aurora-pbs-*	mgarcia	apu hac*	STDIN	137497	1	208		01:00	R	00:26
4673810.aurora-pbs-*	mgarcia	gpu_hac*	job_scrip*		1	208		00:05	Q	

Remember to create the directory logs

mgarcia@aur total 4	ora-uan-00	09:~/g	pu_hack	/My	/_Test	/logs> ls -ltr
-rw-rr	1 mgarcia 1 mgarcia	users	0 May 72 May	6	09:34 09:34	4673810.aurora-pbs-0001.hostmgmt.cm.aurora.alcf.anl.gov.ER
	I Mgaicia	u3013	72 May	0	07.04	

Imgarcia@aurora-uan-0009:~/gpu_hack/My_Tests/logs> more 4673810.aurora-pbs-0001.hostmgmt.cm.aurora.alcf.anl.gov.OL Hello World Hello World Hello World Hello World Hello World Hello World

Hello World

PBS CHEATSHEET

QSUB Options

User Commands

Command	Description
qsub	Submit a job
qsub -I	Submit an interactive job
qstat <jobid></jobid>	Job status
qstat -Q	Print Queue information
qstat -B	Cluster status
qstat -x	Job History
qstat -f <jobid></jobid>	Job status with all information
qstat -ans	Job status with comments and vnode info
<pre>qhold <jobid></jobid></pre>	Hold a job
qrls <jobid></jobid>	Release a job
pbsnodes -a	Print node information
pbsnodes -1	Print nodes that are offline or down
qdel <jobid></jobid>	kill a job
qdel -W force <jobid></jobid>	Force kill a job
qmove	Moves PBS batch job between queues
qalter	Alters a PBS job
pbs_rstat	Shows status of PBS advance or standing reservations

Option	Description
-P project_name	Specifying a project name
-q destination	Specifying queue and/or server
-r value	Marking a job as rerunnable or not
-W depend = list	Specifying job dependencies
-W stagein=list stageout=list	Input/output file staging
-W sandbox= <value></value>	Staging and execution directory: user's home vs. job-specific
-a date_time	Deferring execution
-c interval	Specifying job checkpoint interval
-e path	Specifying path for output and error files
-h	Holding a job (delaying execution)
-J X-Y[:Z}	Defining job array
-j join	Merging output and error files
-k keep	Retaining output and error files on execution host
-l resource_list	Requesting job resources
-M user_list	Setting email recipient list
-m MailOptions	Specifying email notification
-N name	Specifying a job name
-o path	Specifying path for output and error files

PBS CHEATSHEET

Environment Variables

Your job will have access to these environment variables

Option	Description
PBS_JOBID	Job identifier given by PBS when the job is submitted. Created upon execution
PBS_JOBNAME	Job name given by user. Created upon execution
PBS_NODEFILE	The filename containing a list of vnodes assigned to the job.
PBS_0_WORKDIR	Absolute path to directory where qsub is run. Value taken from user's submission environment.
TMPDIR	Pathname of job's scratch directory
NCPUS	Number of threads, defaulting to number of CPUs, on the vnode
PBS_ARRAY_ID	Identifier for job arrays. Consists of sequence number.
PBS_ARRAY_INDEX	Index number of subjob in job array.
PBS_JOBDIR	Pathname of job's staging and execution directory on the primary execution host.

COMPILERS ON AURORA

https://github.com/argonne-Icf/ALCFBeginnersGuide/blob/master/aurora/01_compilers.md

This section describes how to compile C/C++ code standalone, with SYCL and OpenMP, and with MPI.

Specifically it introduces the Intel software environment for compiling system compatible codes. The same flags apply to Fortran applications as well.

User is assumed to know:

- how to compile and run code
- basic familiarity with MPI
- basic familiarity with SYCL and/or OpenMP

Learning Goals:

- MPI compiler wrappers for oneAPI C/C++/FORTRAN compilers
- How to compile a C++ code
- How to compile a C++ code with SYCL and MPI
- How to compile a C++ code with OpenMP and MPI
- How to control CPU and GPU affinities in job scripts

COMPILING C/C++/FORTRAN CODE

When you first login to Aurora, there will be a default list of loaded modules (see them with module list). This includes the oneAPI suite of compilers, libraries, and tools and Cray MPICH. It is recommend to use the MPI compiler wrappers for building applications:

• mpicc - C compiler (use it like oneAPI icx or GNU gcc)

NOTE

- mpicxx C++ compiler (use it like oneAPI icpx or GNU g++)
- mpif90 Fortran compiler (use it like oneAPI ifx or GNU gfortran)

This example only uses the CPU. A GPU programming model, such as SYCL, OpenMP, or OpenCL (or HIP) is required to use the GPU.

COMPILING C/C++ WITH OPENMP

Users have the choice when compiling GPU-enabled applications to compile the GPU kernels at link-time or at runtime.

Compiling the kernels while linking the application is referred to **Ahead-Of-Time (AOT)** compilation. Delaying the compilation of GPU kernels to runtime is referred to as **Just-In-Time (JIT)** compilation.

- **AOT** Compile: -fiopenmp -fopenmp-targets=spir64_gen
 - Link: -fiopenmp -fopenmp-targets=spir64_gen -Xopenmp-target-backend "-device pvc".
 - Compile: -fiopenmp -fopenmp-targets=spir64
 - Link: -fiopenmp -fopenmp-targets=spir64

Both options are available to users, though we recommend using AOT to reduce overhead of starting the application. The examples that follow use AOT compilation.

Example code: 01_example_openmp.cpp

mpicxx -fiopenmp -fopenmp-targets=spir64_gen -c 01_example_openmp.cpp

mpicxx -o 01_example_openmp -fiopenmp -fopenmp-targets=spir64_gen -Xopenmp-target-backend "-device pvc" 01_example_openmp.o

mgarcia@aurora-uan-0009:~/gpu_hack/My_Tests> mpicxx -fiopenmp -fopenmp-targets=spir64_gen -c 01_example_openmp.cpp

mgarcia@aurora-uan-0009:~/gpu_hack/My_Tests> mgarcia@aurora-uan-0009:~/gpu_hack/My_Tests> mpicxx -o 01_example_openmp -fiopenmp -fopenmp-targets=spir64_gen -Xopenmp-target-backend "-device pvc" 01_example_openmp.o Compilation from IR - skipping loading of FCL Build succeeded.

JIT

COMPILING C/C++ WITH OPENMP

Running the code: 01_example_openmp.cpp

Imgarcia@aurora-uan-0009:~> which icpx
/opt/aurora/24.347.0/oneapi/compiler/latest/bin/icpx

mgarcia@aurora-uan-0009:~> icpx --version Intel(R) oneAPI DPC++/C++ Compiler 2025.0.4 (2025.0.4.20241205) Target: x86_64-unknown-linux-gnu Thread model: posix InstalledDir: /opt/aurora/24.347.0/oneapi/compiler/2025.0/bin/compiler Configuration file: /opt/aurora/24.347.0/oneapi/compiler/2025.0/bin/compiler/../icpx.cfg

#!/bin/bash -l #PBS -l select=1 #PBS -l walltime=00:10:00 #PBS -q debug #PBS -A <project-name> #PBS -l filesystems=home:flare #PBS -o logs/ #PBS -e logs/ cd \${PBS_0_WORKDIR} mpiexec -n 1 --ppn 1 ./01 example openmp

Submit your job: qsub -A gpu_hack -q gpu_hack_prio 01_example_openmp.sh

mgarcia@aurora-uan-0009:~/gpu_hack/My_Tests> qsub -A gpu_hack -q gpu_hack_prio 01_example_openmp.sh 4673830.aurora-pbs-0001.hostmgmt.cm.aurora.alcf.anl.gov

The output should look like this in the logs/<jobID>.<hostname>.OU file:

mgarcia@aurora-uan-0009:~/gpu_hack/My_Tests> more logs/4673830.aurora-pbs-0001.hostmgmt.cm.aurora.alcf.anl.gov.OU # of devices= 6 Rank 0 on host 6 running on GPU 0! Using double-precision

Result is CORRECT!! :)

COMPILING C/C++ WITH SYCL

Now you can compile your C/C++ with SYCL code. Users again have the choice of JIT or AOT compilation.

- **AOT** Compile: --intel -fsycl -fsycl-targets=spir64_gen
 - Link: --intel -fsycl -fsycl-targets=spir64_gen -Xsycl-target-backend "-device pvc"
- **JIT** Compile: --intel -fsycl -fsycl-targets=spir64
 - Link: --intel -fsycl -fsycl-targets=spir64

mpicxx --intel -fsycl -fsycl-targets=spir64_gen -c 01_example_sycl.cpp

mpicxx -o 01_example_sycl --intel -fsycl -fsycl-targets=spir64_gen -Xsycl-target-backend "-device pvc" 01_example_sycl.o

Running the code: 01_example_sycl.cpp

Submit your job: qsub -A gpu_hack -q gpu_hack_prio 01_example_sycl.sh

mgarcia@aurora-uan-0009:~/gpu_hack/My_Tests> mpicxx --intel -fsycl -fsycl-targets=spir64_gen -c 01_example_sycl.cpp mgarcia@aurora-uan-0009:~/gpu_hack/My_Tests> mpicxx -o 01_example_sycl --intel -fsycl -fsycl-targets=spir64_gen -Xsycl-target-backend "-device pvc" 01_example_sycl.o Compilation from IR - skipping loading of FCL Build succeeded. mgarcia@aurora-uan-0009:~/gpu_hack/My_Tests> qsub -A gpu_hack -q gpu_hack_prio 01_example_sycl.sh 4673854.aurora-pbs-0001.hostmgmt.cm.aurora.alcf.anl.gov

CPU AFFINITY AND NUMA DOMAINS

Each Aurora node consists of dual 52-core CPUs, each with 2 hyperthreads. Output of the lscpu command can be used to quickly identify the CPU ids for cores in the two sockets.

Iscpu: identify the CPU ids for cores in the 2 sockets.

Architecture:	x86_64									
CPU op-mode(s):	32-bit, 64-bit									
Address sizes:	52 bits physical, 57	bits virtual								
Byte Order:	Little Endian									
CPU(s):	208									
On-line CPU(s) list:	0-207									
Vendor ID:	GenuineIntel									
Model name:	Intel(R) Xeon(R) CPU N	Max 9470C								
CPU family:	6									
Model:	143									
Thread(s) per core:	2									
Core(s) per socket:	- 52									
Socket(s):	2									
Stepping:	- 8									
Frequency boost:	enabled									
CPU max MHz:	2001,0000									
CPU min MHz:	800 0000									
010 1111 1112.	000.0000									
NUMA:										
NUMA node(s):	4									
NUMA node0 CPU(s):	0-51,104-155	Looking at the first two								
NUMA node1 CPU(s):	52-103,156-207	NUMA domains we see								
NUMA node2 CPU(s):	· · · · ·	that CPU cores 0-51 are								
NUMA node3 CPU(s):		in the first socket and								
		the accord acclus In								
		the second socket. The								
		hyperthreads on each								
		socket are CPU cores								
	104-155 and 156-207									

numactl -hardware: more information on NUMA domains

avail	Lab	le: 4	nodes	s (0-3	3)																												
node	0	cpus:	013	234	5	6 7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
node	0	size:	51548	39 MB																													
node	0	free:	3426	53 MB																													
node	1	cpus:	52 53	3 54 5	55	56	57	58	59	60	61	62	2 63	3 64	4 6	5 66	5 67	68	3 69	76	71	72	73	3 74	75	70	5 77	7 78	3 79	9 86	81	L 82	2 8
node	1	size:	51502	28 MB																													
node	1	free:	50813	38 MB																													
node	2	cpus:																															
node	2	size:	65536	5 MB																													
node	2	free:	63977	7 MB																													
node	3	cpus:																															
node	3	size:	65536	5 MB																													
node	3	free:	64140	5 MB																													
node	di	stanc	es:																														
node		0 1	2	3																													
0:	1	0 21	13	23																													
1:	2	1 10	23	13																													
2:	1	3 23	10	23																													
3:	2	3 13	23	10																													

As a means to quickly get started, one could opt for naively binding MPI ranks and processes to the CPU cores using depth logic whereby each MPI rank is assigned to a consecutive set of CPU cores.

For an application running 6 MPI ranks per node (1 per GPU) and each with 4 OpenMP threads on the host, one could set the depth as 4 (or something larger).

```
mpiexec -n 6 --ppn 6 --depth=4 --cpu-bind depth --env
OMP NUM THREADS=4 ...
```


CPU AFFINITY AND NUMA DOMAINS

mpiexec -n 6 --ppn 6 --cpu-bind=list:0-3,4-7,8-11,52-55,56-59,60-63 --env OMP_NUM_THREADS=4 ...

GPU AFFINITY

Similar to the fare degree of flexibility in how one binds software processes to the CPU hardware, one can also bind processes to the GPU hardware at different levels. The default is that each of the 6 GPUs is viewed as a single device. Each Aurora GPU consists of two physical tiles and each can be targeted individually by applications. In other words, a typical configuration for an application may be to spawn 12 MPI ranks per compute node with each MPI rank bound to a single GPU tile. Furthermore, each GPU tile can be targeted in a more granular fashion to bind MPI ranks to individual **Compute Command Streamers** (CCSs). The latter may prove beneficial when an application has considerable work on the CPUs that warrants additional parallelism.

A set of helper scripts are provided which accept the local MPI rank ID as input and assigns the appropriate GPU hardware in a round-robin fashion.

./examples/HelperScripts

- set_affinity_gpu.sh: bind MPI ranks to GPU tile
 - useful for when running at least 2 MPI ranks per PVC GPU (i.e. 12 MPI ranks per node)
- set_affinity_gpu_2ccs.sh: bind MPI ranks to 1/2 GPU tile
 - useful for when running at least 4 MPI ranks per PVC GPU (i.e. 24 MPI ranks per node)
- set affinity_gpu_4ccs.sh: bind MPI ranks to 1/4 GPU tile
 - useful for when running at least 8 MPI ranks per PVC GPU (i.e. 48 or 96 MPI ranks per node)

Example submission scripts: 01_example_openmp_affinity.sh & 01_example_sycl_affinity.sh

GPU AFFINITY

https://www.intel.com/content/www/us/en/docs/oneapi/optimization-guide-gpu/2023-2/intel-xe-gpu-architecture.html

- Vector Engines execute SIMD math & load/store
- Each Vector Engine services multiple HW threads, issuing one thread instruction per clock tick
- □ Multiple Vector Engines form a Core, sharing one memory load/store unit
- Multiple Cores form a Slice
- □ Four Slices form a Stack
- □ Two Stacks form a PVC
- 28 Argonne Leadership Computing Facility

EU = Vector Engine Sub-slice = Core Slice = Slice

Tile = Stack

Total Threads = #_slices * #_cores_per_slice * #_ve_per_core * #_threads_per_ve

CHOOSE YOUR OWN ADVENTURE

U

ALCF Aurora Intel CPU / Intel GPU SYCL/DPC++

29 Argonne Leadership Computing Facility

X^e-core

Intel[®] Xeon Max Series CPU with HBM

Intel[®] Data Center GPU Max

x4XXXc{0-7}s{0-7}b0n0

Node Characteristics

Representation of Physical Hardware

