

On Boarding on Aurora
May 6, 2025

Marta García Martínez

Computational Scientist

Argonne National Laboratory

Argonne Leadership Computing Facility3

LLNL El Capitan

AMD CPU / AMD GPU

HIP

ANL Aurora

Intel CPU / Intel GPU

SYCL/DPC++

ORNL Frontier

AMD CPU / AMD GPU

HIP

#2 #3#1(*) (*) (*)

TOP500 List

In production
Monday, January 27th, 2025

#3 in Top500 w/9234 nodes – HPL 1.012 exaFLOPS Max

#1 in Top500 w/9500 nodes – HPL-MxP 11.6 exaFLOPS

44,544 devices 37,632 devices 63,744 devices

In terms of numbers of GPUs, Aurora is the largest of the three DOE Exascale systemsNOTE

https://www.top500.org/lists/top500/list/2024/11/

https://www.top500.org/lists/top500/list/2024/11/

Argonne Leadership Computing Facility4

Aurora

Argonne’s exascale supercomputer

will leverage several technological

innovations to support machine

learning and data science

workloads alongside traditional

modeling and simulation runs.

≥2 Exaflop DP
SUSTAINED PERFORMANCE

Ponte Vecchio
Xe ARCHITECTURE-BASED GPU

Sapphire Rapids
INTEL XEON SCALABLE PROCESSOR

HPE Cray EX
PLATFORM

Compute Node

2 Intel® Xeon CPU Max Series processors:

64GB HBM on each, 512GB DDR5 each; 6 Intel

Data Center GPU Max Series, 128GB on each,

RAMBO cache on each; Unified Memory

Architecture; 8 Slingshot 11 fabric endpoints

GPU Architecture

Xe arch-based “Ponte Vecchio” GPU

Tile-based chiplets, HBM stack,

Foveros 3D integration, 7nm

CPU-GPU Interconnect

CPU-GPU: PCIe; GPU-GPU: Xe Link

System Interconnect

HPE Slingshot 11, Dragonfly topology with

adaptive routing, Peak Injection bandwidth

2.12 PB/s, Peak Bisection bandwidth 0.69 PB/s

Network Switch

25.6 Tb/s per switch, from 64–200 Gbs

ports (25 GB/s per direction)

High-Performance Storage

230 PB, 31 TB/s, 1024 nodes (DAOS)

Programming Models

Intel oneAPI, MPI, OpenMP, C/C++,

Fortran, SYCL/DPC++

Node Performance

>130 TF

System Size

10,624 nodes, 166 compute racks

 CPUs: 21,248

 GPUs: 63,744

Argonne Leadership Computing Facility5

https://github.com/argonne-lcf/ALCFBeginnersGuide https://docs.alcf.anl.gov/aurora/

AURORA BEGINNERS GUIDE

https://docs.alcf.anl.gov/aurora/known-issues/ Known issues: https://github.com/argonne-lcf/GettingStarted/tree/incite-hackathon-2025NOTE

https://github.com/argonne-lcf/ALCFBeginnersGuide
https://docs.alcf.anl.gov/aurora/
https://github.com/argonne-lcf/GettingStarted/tree/incite-hackathon-2025

Argonne Leadership Computing Facility6

Argonne Leadership Computing Facility11

AURORA CABINETS AT ARGONNE

Argonne Leadership Computing Facility7

AURORA NODES NAME CONVENTION

x4100c7s4b0n0 is a single node

never changes on Aurora

(board 0, node 0)

x4100c7s4b0n0 == Rack x4100 Chassis c7 Slot s4 Board b0 Node n0

Argonne Leadership Computing Facility8

NODE CHARACTERISTICS

The information on this page is subject to the use and disclosure

restrictions provided on the Title and Notices pages of this document

Related to Subcontracts: 5A-30286 & 8F-30005

4

HBM HBM

Xe
Link

HBM HBM

Xe
Chiplet

Xe
Chiplet

Xe
Chiplet

Xe
Chiplet

Xe
Chiplet

Xe
Chiplet

Xe
Chiplet

Xe
Chiplet

HBM HBM

HBM HBM

Xe
Chiplet

Xe
Chiplet

Xe
Chiplet

Xe
Chiplet

Xe
Chiplet

Xe
Chiplet

Xe
Chiplet

Xe
Chiplet

Xe
Link

Intel® Xeon Max Series CPU with HBM

Intel® Data Center GPU Max

Argonne Leadership Computing Facility9

This image shows a deeper dive into the physical hardware from the perspective of how an application might see the compute node.
Though not quite correct, we can think of the compute blade as consisting of two sockets, each having a 52-core CPU and 3 GPUs.
Each CPU core supports 2 hyperthreads. The GPUs physically consist of two tiles with a fast interconnect and many applications
may be benefit by binding processes to individual tiles as indicated by the color assignments (one of many possibilities).

PHYSICAL HARDWARE

Argonne Leadership Computing Facility10

ssh <username>@aurora.alcf.anl.gov

LOGGING IN

FILESYSTEM

/lus/flare/projects/<project-name>

/home/<username>

myprojectquotasTIPS

You will be prompted for your password, which is a six digit code generated uniquely
each time using the MobilePASS+ app or a physical token (if you have one).

<username>@aurora-uan-0012:~>

MyALCF

Users should use project spaces for large scale storage

and software installations. Increases can be requested

via support@alcf.anl.gov.
NOTE

Argonne Leadership Computing Facility11

RESERVATION QUEUE MAY 6-16

NOTE

Polaris will be down for

maintenance for parts in May.

gpu_hack_prio:

Special priority queue up to 256 nodes, 2 node max size

E.g. qsub -I -l select=1 -l walltime=00:60:00 -l filesystems=home:flare -A gpu_hack -q gpu_hack_prio

https://status.alcf.anl.gov/#/polaris GRONK:

https://status.alcf.anl.gov/

Argonne Leadership Computing Facility12

GETTING TO KNOW THE ENVIRONMENT

module list module avail

ALCF uses Environment Modules to provide users with loadable software packages. This includes

compilers, python installations, and other software. Here are some basic commands:

export MODULEPATH=$MODULEPATH:/soft/modulefiles
OR
module use /soft/modulefiles

By default, MODULEPATH only includes system libraries from Intel/HPE. One can include pre-built modules from
ALCF staff by adding the path /soft/modulefiles to MODULEFILE using either of these commands:

module load cmakeLoading modules

Using Spack

Spack is an HPC oriented build management system. In this case of this quick introduction, Spack is simply used to
offer additional pre-compiled software.
On Aurora, these additional spack packages are made available by default from the /soft/modulefiles area:

module use /soft/modulefiles

https://modules.readthedocs.io/en/latest/index.html

Argonne Leadership Computing Facility13

OUTPUT

Argonne Leadership Computing Facility14

USING THE AURORA JOB SCHEDULER: PBS

Aurora uses the PBS scheduler similar to other ALCF systems, such as Polaris. PBS is a third party product that comes with
extensive documentation. This is an introduction, not an extensive tutorial so we will only cover some basics.

Running interactively

qsub -I -l select=1 -l walltime=00:60:00 -l filesystems=home:flare -A gpu_hack -q gpu_hack_prio

module load xpu-smi

xpu-smi discovery

mkdir /lus/flare/projects/<your_project_name>/gpu_hack/

cp –r /lus/flare/projects/gpu_hack/alcf_training/examples/ .

Some tests

https://github.com/argonne-lcf/ALCFBeginnersGuide/blob/master/aurora/00_scheduler.md

chmod u+x 00_hello_world.sh

https://github.com/argonne-lcf/ALCFBeginnersGuide/blob/master/aurora/00_scheduler.md

Argonne Leadership Computing Facility15

#!/bin/bash -l
#PBS -l select=1
#PBS -l walltime=00:30:00
#PBS -q debug
#PBS -l filesystems=home:flare
#PBS -A <project-name>
#PBS -o logs/
#PBS -e logs/

GPUS_PER_NODE=6

mpiexec -n $GPUS_PER_NODE -ppn $GPUS_PER_NODE echo Hello World

USING THE AURORA JOB SCHEDULER: PBS

Submit your first job

The more standard method for running a job is to submit it to the scheduler via qsub with a script that will execute your

job without you needing to login to the worker nodes. Let's walk through an example.

First we need to create a job script (example: examples/00_hello_world.sh):

You'll notice we can use the #PBS line prefix at the top of our

script to set qsub command line options. We can still use the

command line to override the options in the script.
NOTE

Here we used -o logs/ and -e logs/ which just redirects the

STDOUT(-o) and the STDERR(-e) log files from the job into

the logs/ directory to keep things tidy. The logs directory must

exist before the job is submitted.

NOTE

qsub job_script.sh

chmod u+x job_script.sh

Argonne Leadership Computing Facility16

USING THE AURORA JOB SCHEDULER: PBS

Monitor your job

qstat –u <username>
Without specifying the username we will get a full print out of every job queued and running.

This can be overwhelming so using the username reduces the output to jobs for just

that username. Adding alias qsme='qstat -u <username>' to your .bashrc is a nice shortcut.

Delete your job

Job output

qdel <jobID>

<script_name>.o<pbs-job-id>
<script_name>.e<pbs-job-id>

Any job STDOUT or STDERR output will go into two different files that by default are named:

logs/${PBS_JOBID}.ER
logs/${PBS_JOBID}.OU

In our example submit script, we specify -o logs/ and -e logs/ so that the files go into the logs/ directory.

In that case, the output files are named differently:

Argonne Leadership Computing Facility17

OUTPUT

Submit a job

Remember to create the directory logs

Argonne Leadership Computing Facility18

PBS CHEATSHEET

Argonne Leadership Computing Facility19

PBS CHEATSHEET

Argonne Leadership Computing Facility20

COMPILERS ON AURORA

This section describes how to compile C/C++ code standalone, with SYCL and OpenMP, and with MPI.

Specifically it introduces the Intel software environment for compiling system compatible codes. The same

flags apply to Fortran applications as well.

User is assumed to know:

• how to compile and run code

• basic familiarity with MPI

• basic familiarity with SYCL and/or OpenMP

Learning Goals:

• MPI compiler wrappers for oneAPI C/C++/FORTRAN compilers

• How to compile a C++ code

• How to compile a C++ code with SYCL and MPI

• How to compile a C++ code with OpenMP and MPI
• How to control CPU and GPU affinities in job scripts

https://github.com/argonne-lcf/ALCFBeginnersGuide/blob/master/aurora/01_compilers.md

https://github.com/argonne-lcf/ALCFBeginnersGuide/blob/master/aurora/01_compilers.md

Argonne Leadership Computing Facility21

COMPILING C/C++/FORTRAN CODE

When you first login to Aurora, there will be a default list of loaded modules (see them with module list).

This includes the oneAPI suite of compilers, libraries, and tools and Cray MPICH. It is recommend to use

the MPI compiler wrappers for building applications:

• mpicc - C compiler (use it like oneAPI icx or GNU gcc)

• mpicxx - C++ compiler (use it like oneAPI icpx or GNU g++)
• mpif90 - Fortran compiler (use it like oneAPI ifx or GNU gfortran)

Next an example C++ code is compiled.

mpicxx 01_example.cpp -o 01_example

./01_example

Build and run on an Aurora login node or worker node

Example code: 01_example.cpp

NOTE
This example only uses the CPU. A GPU programming model, such

as SYCL, OpenMP, or OpenCL (or HIP) is required to use the GPU.

Argonne Leadership Computing Facility22

COMPILING C/C++ WITH OPENMP

Users have the choice when compiling GPU-enabled applications to compile the GPU kernels at link-time or at runtime.

Compiling the kernels while linking the application is referred to Ahead-Of-Time (AOT) compilation.

Delaying the compilation of GPU kernels to runtime is referred to as Just-In-Time (JIT) compilation.

AOT

JIT

Both options are available to users, though we recommend using AOT to reduce overhead of starting the application.

The examples that follow use AOT compilation.

mpicxx -fiopenmp -fopenmp-targets=spir64_gen -c 01_example_openmp.cpp

mpicxx -o 01_example_openmp -fiopenmp -fopenmp-targets=spir64_gen -Xopenmp-target-backend "-device pvc"
01_example_openmp.o

Example code: 01_example_openmp.cpp

• Compile: -fiopenmp -fopenmp-targets=spir64_gen
• Link: -fiopenmp -fopenmp-targets=spir64_gen -Xopenmp-target-backend "-device pvc".

• Compile: -fiopenmp -fopenmp-targets=spir64
• Link: -fiopenmp -fopenmp-targets=spir64

Argonne Leadership Computing Facility23

Running the code: 01_example_openmp.cpp

COMPILING C/C++ WITH OPENMP

Submit your job: qsub -A gpu_hack -q gpu_hack_prio 01_example_openmp.sh

The output should look like this in the logs/<jobID>.<hostname>.OU file:

Argonne Leadership Computing Facility24

COMPILING C/C++ WITH SYCL

Now you can compile your C/C++ with SYCL code. Users again have the choice of JIT or AOT compilation.

AOT

JIT

mpicxx --intel -fsycl -fsycl-targets=spir64_gen -c 01_example_sycl.cpp

mpicxx -o 01_example_sycl --intel -fsycl -fsycl-targets=spir64_gen -Xsycl-target-backend "-device pvc" 01_example_sycl.o

Submit your job: qsub -A gpu_hack -q gpu_hack_prio 01_example_sycl.sh

Running the code: 01_example_sycl.cpp

• Compile: --intel -fsycl -fsycl-targets=spir64_gen

• Link: --intel -fsycl -fsycl-targets=spir64_gen -Xsycl-target-backend "-device pvc"

• Compile: --intel -fsycl -fsycl-targets=spir64

• Link: --intel -fsycl -fsycl-targets=spir64

Argonne Leadership Computing Facility25

CPU AFFINITY AND NUMA DOMAINS
Each Aurora node consists of dual 52-core CPUs, each with 2 hyperthreads.

Output of the lscpu command can be used to quickly identify the CPU ids for cores in the two sockets.

lscpu: identify the CPU ids for cores in the 2 sockets. numactl -hardware: more information on NUMA domains

Looking at the first two

NUMA domains, we see
that CPU cores 0-51 are

in the first socket and

CPU cores 52-103 in
the second socket. The

hyperthreads on each
socket are CPU cores

104-155 and 156-207. mpiexec -n 6 --ppn 6 --depth=4 --cpu-bind depth --env
OMP_NUM_THREADS=4 ...

As a means to quickly get started, one could opt for naively binding MPI
ranks and processes to the CPU cores using depth logic whereby each

MPI rank is assigned to a consecutive set of CPU cores.

For an application running 6 MPI ranks per node (1 per GPU) and each
with 4 OpenMP threads on the host, one could set the depth as 4 (or

something larger).

Argonne Leadership Computing Facility26

CPU AFFINITY AND NUMA DOMAINS

mpiexec -n 6 --ppn 6 --cpu-bind=list:0-3,4-7,8-11,52-55,56-59,60-63 --env OMP_NUM_THREADS=4 ...

1 53

Argonne Leadership Computing Facility27

GPU AFFINITY

Similar to the fare degree of flexibility in how one binds software processes to the CPU hardware, one can also bind
processes to the GPU hardware at different levels. The default is that each of the 6 GPUs is viewed as a single device.
Each Aurora GPU consists of two physical tiles and each can be targeted individually by applications. In other words, a
typical configuration for an application may be to spawn 12 MPI ranks per compute node with each MPI rank bound to
a single GPU tile. Furthermore, each GPU tile can be targeted in a more granular fashion to bind MPI ranks to
individual Compute Command Streamers (CCSs). The latter may prove beneficial when an application has considerable
work on the CPUs that warrants additional parallelism.

A set of helper scripts are provided which accept the local MPI rank ID as input and assigns the appropriate GPU
hardware in a round-robin fashion.

./examples/HelperScripts
• set_affinity_gpu.sh: bind MPI ranks to GPU tile

▪ useful for when running at least 2 MPI ranks per PVC GPU (i.e. 12 MPI ranks per node)
• set_affinity_gpu_2ccs.sh: bind MPI ranks to 1/2 GPU tile

▪ useful for when running at least 4 MPI ranks per PVC GPU (i.e. 24 MPI ranks per node)
• set affinity_gpu_4ccs.sh: bind MPI ranks to 1/4 GPU tile

▪ useful for when running at least 8 MPI ranks per PVC GPU (i.e. 48 or 96 MPI ranks per node)

Example submission scripts: 01_example_openmp_affinity.sh & 01_example_sycl_affinity.sh

Argonne Leadership Computing Facility28

GPU AFFINITY https://www.intel.com/content/www/us/en/docs/oneapi/optimization-guide-gpu/2023-2/intel-xe-gpu-architecture.html

EU = Vector Engine

Sub-slice = Core

Slice = Slice

Tile = Stack

Total Threads = #_slices * #_cores_per_slice * #_ve_per_core * #_threads_per_ve

(3,584 = 4 * 14 * 8 * 8)

❑ Vector Engines execute SIMD math & load/store

❑ Each Vector Engine services multiple HW threads, issuing one thread

instruction per clock tick

❑ Multiple Vector Engines form a Core, sharing one memory load/store unit

❑ Multiple Cores form a Slice

❑ Four Slices form a Stack

❑ Two Stacks form a PVC

https://www.intel.com/content/www/us/en/docs/oneapi/optimization-guide-gpu/2023-2/intel-xe-gpu-architecture.html

Argonne Leadership Computing Facility29

CHOOSE YOUR OWN ADVENTURE

Xe-core

Xe-slice

Xe- stack

The information on this page is subject to the use and disclosure

restrictions provided on the Title and Notices pages of this document

Related to Subcontracts: 5A-30286 & 8F-30005

4

HBM HBM

Xe
Link

HBM HBM

Xe
Chiplet

Xe
Chiplet

Xe
Chiplet

Xe
Chiplet

Xe
Chiplet

Xe
Chiplet

Xe
Chiplet

Xe
Chiplet

HBM HBM

HBM HBM

Xe
Chiplet

Xe
Chiplet

Xe
Chiplet

Xe
Chiplet

Xe
Chiplet

Xe
Chiplet

Xe
Chiplet

Xe
Chiplet

Xe
Link

Intel® Xeon Max

Series CPU with HBM

Intel® Data Center GPU Max

Representation of Physical Hardware

x4XXXc{0-7}s{0-7}b0n0

Node Characteristics

U
R
O
R
A

ALCF Aurora

Intel CPU / Intel GPU

SYCL/DPC++

#3

	Default Section
	Slide 1
	Slide 2: On Boarding on Aurora

	Aurora Beginners Guide
	Slide 3
	Slide 4: Aurora
	Slide 5: AURORA BEGINNERS GUIDE
	Slide 6: AURORA CABINETS AT ARGONNE
	Slide 7: AURORA NODES NAME CONVENTION
	Slide 8: NODE CHARACTERISTICS
	Slide 9: PHYSICAL HARDWARE
	Slide 10: LOGGING IN
	Slide 11
	Slide 12
	Slide 13

	Using the Aurora Job Scheduler: PBS
	Slide 14: USING THE AURORA JOB SCHEDULER: PBS
	Slide 15: USING THE AURORA JOB SCHEDULER: PBS
	Slide 16: USING THE AURORA JOB SCHEDULER: PBS
	Slide 17
	Slide 18
	Slide 19

	Compilers on Aurora
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

