
Intel® Distribution for GDB*
Sergey Kiselev

Technical Consulting Engineer

Intel Corporation

Argonne Leadership Computing Facility2

Notices & Disclaimers

Intel technologies may require enabled hardware, software or service activation. Learn more at intel.com or from the OEM or retailer.

Your costs and results may vary.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific
to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific
instruction sets covered by this notice. Notice Revision #20110804. https://software.intel.com/en-us/articles/optimization-notice

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those
factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the
performance of that product when combined with other products. See backup for configuration details. For more complete information about performance and benchmark results, visit
www.intel.com/benchmarks.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See configuration disclosure for details. No product or
component can be absolutely secure.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as
any warranty arising from course of performance, course of dealing, or usage in trade.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

Argonne Leadership Computing Facility3

Agenda

• Intel® Distribution for GDB* Overview

• Debugging GPU Offloaded Code

⏤Compilation flow and debug information

⏤GPU debug model

⏤Compute kernel debugging

⏤SIMD lanes

⏤Multi-device debugging

⏤GDB commands relevant for GDB debugging

• GDB Demo

• Summary and References

Argonne Leadership Computing Facility4

Intel® Distribution for GDB*
Overview

Argonne Leadership Computing Facility5

Intel® Distribution for GDB* Overview

• Intel® oneAPI

⏤Set of toolkits that include software development tools and libraries

⏤Advanced compilers, including C++ compiler with SYCL support

⏤The goal is to enable developers to write code for heterogeneous and offload processors

• Intel® Distribution for GDB*

⏤All standard GDB* features

▪ Intel GDB team works with the GDB project to contribute back

⏤Support for C, C++, SYCL, Fortran, OpenMP for both C/C++ and Fortran

⏤Multi-target/GPU: debug “host” and “kernel” in the same session

▪ Auto-attach: automatically create inferior to debug GPU

o Automatically detect JIT-compiled, or dynamically loaded, kernel code

▪ SIMD lanes: display lane information and switch among lanes

Argonne Leadership Computing Facility6

Fundamental GDB Commands

Command Description

help [cmd|cmd-class] Print help for the given command or command class

run [arg1, … argN] Start the program, optionally with arguments

break <file>:<line> Define a breakpoint at a specified line

info break Show defined breakpoints

delete <N> Remove Nth breakpoint

step / next Single-step a source line, stepping into / over function calls

info args/locals Show the arguments / local variables of the current function

print <exp> Print value of expression

x/<format> <addr> Examine the memory at <addr>

up, down Go one level up/down in the function call stack

disassemble Disassemble the current function

backtrace Show the function call stack

Debugging GPU Offloaded Code

Argonne Leadership Computing Facility8

Application Compilation (JIT)

Compile
host app

Host
process

• Compile with -g (generate debug information) and -O0 (disable
optimizations) to debug.

• May use –O2 to debug at assembly level

• Use same optimization level when linking

• Debug also works with ahead-of-time (AOT) compilation

Source

*.cpp

Host
binary

Host
process

Debug Info

SPIR-V

DWARF

ELF

Debug Info

SPIR-V
Launch

JIT-compile
kernels

Device HostLegend: DebugKernels are translated to SPIR-V IR

Argonne Leadership Computing Facility9

GPU Debug Model

1. Host inferior*

2. Device inferior*, one per Device / Tile

3. Device thread, one per EU thread

4. SIMD lanes, depending on SIMD width
(1/8/16/32)

• *inferior ≈ debuggee process

EU

Host Application

User Mode Driver /
Intel® Graphics Compiler

Kernel Mode Driver: Graphics driver

Thread Spawner

2

1

Thread Dispatcher

EU EU

EU EU

EU EU

EU EU

EU EU

EU EU

EU EU

EU EU

EU EU

EU EU

EU EU

EU EU

T T T T T T

GPU

3

4

Argonne Leadership Computing Facility10

Kernel Debugging, CPU vs GPU

• Behavior and commands are very similar to standard GDB*.

• CPU and GPU debugging experience is similar except:

• SIMD Lane Support

⏤CPU: Cannot switch context to non-default SIMD lane.

⏤GPU: May switch to a particular SIMD lane during debugging.

• Debugger calls to kernel functions

⏤CPU: Supported

⏤GPU: Not supported

Argonne Leadership Computing Facility11

Inferiors

• Debugger create inferior(s) that attaches to GPU(s) to receive events and control the GPU

Intel® Distribution for GDB*
Inferior 1 Inferior 2

Debug GPU

gdbserver-gt

Debug CPU Linux native target Remote target

$ icpx -fsycl –g –O0 array-transform.cpp –o array-transform

$ gdb-oneapi –q –args ./array-transform gpu

Reading symbols from ./array-transform...

(gdb) b 59

Breakpoint 1 at 0x406f34: file array-transform.cpp, line 59.

(gdb) r

…

intelgt: gdbserver-gt started for process 28986.

…

(gdb) info inferiors

 Num Description Connection Executable

 1 process 9463 1 (native) <path_to_program>

* 2 device 1 2 (extended-remote gdbserver-gt --multi --hostpid=9463 -)

GDB uses inferior objects to represent states
of program execution (usually a process)

Argonne Leadership Computing Facility12

Debugging Threaded GPU SIMD Code

• Kernel code written for single work-item

• Code implicitly threaded and widened to vectors of work-items

• Variable locations expressed as functions of the SIMD lane

⏤Lane field added to thread representation <inferior>.<thread>:<lane>

⏤Applies to info threads, thread, thread apply …

Argonne Leadership Computing Facility13

SIMD Lanes Support

• Only enabled SIMD lanes displayed

⏤info threads to see active threads and lanes

• SIMD width is not fixed

• A user can switch only between enabled SIMD lanes

⏤thread <inferior>:<thread>.<lane>

• After a stop, GDB switches to an enabled SIMD lane

• print/t $emask to see the execution mask

A thread might switch
between different kernels
with different SIMD widths

Disabled due to
SIMD width

Disabled due to
conditional flow

Disabled due to
workload size

…

if (index % 2 == 0)
 out[index] = value;
else
 out[index] = -value;

Argonne Leadership Computing Facility14

Multi-Device Debugging

• A program can offload a kernel to all or subset of GPU devices

• Intel® Distribution for GDB* can debug the CPU and GPUs in the same debug session

• User can switch to the context of a thread on a GPU or the CPU

• Each GPU device appears as a separate inferior (i.e. process)

• Inferior for a device does not appear if not used

• Threads of the GPUs can be independently resumed; thread state can be examined.

Argonne Leadership Computing Facility15

Multi-Device Debugging

Second GPU’s threads
First GPU’s threads
Host application threads (CPU)

Argonne Leadership Computing Facility16

GDB Commands Relevant for GPU Debugging
Command Description

info inferiors
Display information about the inferiors. GPU debugging will

display additional inferior(s) (gdbserver-gt)

info threads <thread>
Display information about threads, including their active SIMD

lanes

thread <thread>:<lane> Switch context to the SIMD lane of the specified thread

thread apply <thread>:<lane> <cmd> Apply <cmd> to specified lane of the thread

set scheduler-locking on/step/off

Lock the thread scheduler. Keep other threads stopped while

current thread is stepping (step) or resumed (on) to avoid

interference. Default (off)

set nonstop on/off

Enable/disable nonstop mode. Set before program starts.

(off) : When a thread stops, all other threads stop. Default.

(on) : When a thread stops, other threads keep running.

print/t $emask Inspect the execution mask to show active lanes

Argonne Leadership Computing Facility17

Commands with Different Behavior – CPU vs. GPU

Command Description GPU Behavior

disassemble Disassemble code GEN instructions and registers shown

step, stepi, next

Single-step source line into function

calls, single-step machine instruction,

single-step source line over function

calls

SIMD lanes are supported, SIMD lane

switches can occur

break Create breakpoint

May create break point at a specific SIMD

lane.
break 56 thread 2:3

May specify breakpoint for a particular

inferior
break 56 inferior 2

commands
Specify a list of commands for given

breakpoints

With the /a modifier, breakpoint actions

apply to all SIMD lanes

Argonne Leadership Computing Facility18

Enabling GPU Debug

• GPU Debugging is disabled by default for performance reasons

• Enable debugging in the Kernel Mode Driver (KMD):

echo 1 > /sys/class/drm/card0/prelim_enable_eu_debug

…

echo 1 > /sys/class/drm/cardN/prelim_enable_eu_debug

• Set ZET_ENABLE_PROGRAM_DEBUGGING=1 to enable debugging in the GPU Runtime (UMD)

export ZET_ENABLE_PROGRAM_DEBUGGING=1

• After finishing the debug session, disable debugging in the KMD:

echo 0 > /sys/class/drm/card0/prelim_enable_eu_debug

…

echo 0 > /sys/class/drm/cardN/prelim_enable_eu_debug

• Argonne Aurora specific:

⏤helper_toggle_eu_debug.sh script to enable and disable KMD is provided here:

▪ https://github.com/argonne-lcf/ALCFBeginnersGuide/blob/master/aurora/02_a_debugger.md

https://github.com/argonne-lcf/ALCFBeginnersGuide/blob/master/aurora/02_a_debugger.md

Argonne Leadership Computing Facility19

GPU Debug Demo

Argonne Leadership Computing Facility20

Sample GDB Session

• $ gdb-oneapi -q ./array-transform
• Reading symbols from ./array-transform...
• (gdb) set print thread-events off
• (gdb) break 61
• Breakpoint 1 at 0x406362: file array-transform.cpp, line 61.
• (gdb) run gpu
• Starting program: /home/intel/oneAPI-samples/Tools/ApplicationDebugger/array-transform/src/array-transform gpu
• [Thread debugging using libthread_db enabled]
• Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".
• intelgt: gdbserver-gt started for process 124229.
• Will listen for an attached process
• [SYCL] Using device: [Intel(R) Iris(R) Plus Graphics 655 [0x3ea5]] from [Intel(R) Level-Zero]
• intelgt: attached to device 1 of 1; id 0x3ea5 (Gen9)
• [New inferior 2]
• [Switching to Thread 1.32768 lane 1]

• Thread 2.1 hit Breakpoint 1, with SIMD lanes [1 3 5 7],
main::{lambda(auto:1&)#1}::operator()<cl::sycl::handler>(cl::sycl::handler&)
const::{lambda(cl::sycl::id<1>)#1}::operator()(cl::sycl::id<1>) const (this=0x1c49310, index=cl::sycl::id<1> = {...}) at
array-transform.cpp:61

• 61 result = -1; // else-branch
• (gdb) list
• 56 int element = in[index]; // breakpoint-here
• 57 int result = element + 50;
• 58 if (id0 % 2 == 0) {
• 59 result = result + 50; // then-branch
• 60 } else {
• 61 result = -1; // else-branch
• 62 }
• 63 out[index] = result;
• 64 });
• 65 // kernel-end
• (gdb) print index
• $1 = cl::sycl::id<1> = {1}
• (gdb)

Argonne Leadership Computing Facility21

GPU Debugging Limitations

• If a bug occurs on both CPU and GPU, debug on the CPU

• Breakpoint must be set inside kernel to debug GPU
⏤Unable to step into the kernel, separate inferiors

• Debug process state in GPU hardware (not on CPU)
⏤Restricts GPU to single context (unable to perform other tasks)

⏤Display interruption for rendering GPU

• CPU polls status of debug process state through MMIO
⏤Increases load on host

• Inspecting shared local memory (SLM) is not supported

• See Release Notes for complete list

https://software.intel.com/content/www/us/en/develop/articles/gdb-release-notes.html

Argonne Leadership Computing Facility22

Additional Debug Scenarios

• Core dump Analysis
⏤ Enable core dumps:

ulimit -c unlimited

mpiexec -ppn 1 --rlimits CORE pwd

⏤ Run the application and generate core dump file:

mpiexec –n N debugged_application <options>

⏤ Load application in GDB and print the backtrace:

gdb-oneapi debugged_application corefile

 thread apply all bt

• MPI Debugging
⏤ Debug a single rank by running that rank under the GDB, for example:

mpirun --env ZET_ENABLE_PROGRAM_DEBUGGING=1 -n 1 gdb-oneapi <mpi_app>: -n 1 <mpi_app>

⏤ Debug several ranks, using several GDB instances, each one in its own xterm:

mpirun --env ZET_ENABLE_PROGRAM_DEBUGGING=1 -n 2 xterm –e gdb-oneapi <mpi_app>

⏤ Non-interactive debug:

gdb-oneapi -batch -ex <cmd1> -ex <cmd2> … -ex <cmdN> --args <mpi_app> <app_args>

▪ Wrapper script: https://docs.alcf.anl.gov/aurora/debugging/gdb-oneapi/#noninteractive-debugging

• Python Debugging
⏤ Mainly intended for debugging C API extensions and CPython Internals

⏤ Use python-gdb.py extension

⏤ Documentation: https://docs.python.org/3/howto/gdb_helpers.html

source /usr/share/gdb/auto-load/usr/lib64/libpython3.6m.so.1.0-gdb.py in GDB

https://docs.alcf.anl.gov/aurora/debugging/gdb-oneapi/#noninteractive-debugging
https://docs.python.org/3/howto/gdb_helpers.html

Argonne Leadership Computing Facility23

Summary and References

• Intel® Distribution for GDB* can be used to debug host and device for oneAPI applications written in
various languages

• Traditional GDB commands have been extended to accommodate GPU execution mode

• References:

⏤ALCF Beginners Guide - Debugging on Aurora

⏤Debugging on Aurora with gdb-oneapi

⏤ Intel® Distribution for GDB* Get Started Guide

▪ Linux, Windows

⏤Debugging with Intel® Distribution for GDB Tutorial

▪ Linux, Windows

⏤ Intel® Distribution for GDB* Release Notes

⏤ Intel® Distribution for GDB* Reference Sheet

⏤Debugger Samples on GitHub

What questions do you have?

https://github.com/argonne-lcf/ALCFBeginnersGuide/blob/master/aurora/02_a_debugger.md
https://docs.alcf.anl.gov/aurora/debugging/gdb-oneapi/
https://www.intel.com/content/www/us/en/docs/distribution-for-gdb/get-started-guide-linux/2025-1/overview.html
https://www.intel.com/content/www/us/en/docs/distribution-for-gdb/get-started-guide-windows/2025-1/overview.html
https://www.intel.com/content/www/us/en/docs/distribution-for-gdb/tutorial-debugging-dpcpp-linux/2025-1/overview.html
https://www.intel.com/content/www/us/en/docs/distribution-for-gdb/tutorial-debugging-dpcpp-windows/2025-1/overview.html
https://software.intel.com/content/www/us/en/develop/articles/gdb-release-notes.html
https://software.intel.com/content/www/us/en/develop/download/gdb-reference-sheet.html
https://github.com/oneapi-src/oneAPI-samples/tree/master/Tools/ApplicationDebugger

	Slide 1: Intel® Distribution for GDB*
	Slide 2: Notices & Disclaimers
	Slide 3: Agenda
	Slide 4: Intel® Distribution for GDB* Overview
	Slide 5: Intel® Distribution for GDB* Overview
	Slide 6: Fundamental GDB Commands
	Slide 7: Debugging GPU Offloaded Code
	Slide 8: Application Compilation (JIT)
	Slide 9: GPU Debug Model
	Slide 10: Kernel Debugging, CPU vs GPU
	Slide 11: Inferiors
	Slide 12: Debugging Threaded GPU SIMD Code
	Slide 13: SIMD Lanes Support
	Slide 14: Multi-Device Debugging
	Slide 15: Multi-Device Debugging
	Slide 16: GDB Commands Relevant for GPU Debugging
	Slide 17: Commands with Different Behavior – CPU vs. GPU
	Slide 18: Enabling GPU Debug
	Slide 19: GPU Debug Demo
	Slide 20: Sample GDB Session
	Slide 21: GPU Debugging Limitations
	Slide 22: Additional Debug Scenarios
	Slide 23: Summary and References

