
www.anl.gov

Compiling and Running for
HPC Applications

Colleen Bertoni, Thomas Applencourt, Brian Homerding, Kris Rowe, Abhishek Bagusetty, Nathan Nichols

Argonne Leadership Computing Facility

Argonne Leadership Computing Facility2

Agenda

• Quick reminder of Aurora and Programming Models available

• 15 min quickstart of each of the following programming models:

• OpenMP offload

• SYCL

• Kokkos

• OCCA

• Overview of CPU and GPU binding on Aurora nodes

• Overview of Math and other libraries on Aurora

Argonne Leadership Computing Facility3

References

• Argonne documentation

• https://docs.alcf.anl.gov/aurora/

• https://docs.alcf.anl.gov/aurora/getting-started-on-aurora/

https://docs.alcf.anl.gov/aurora/
https://docs.alcf.anl.gov/aurora/getting-started-on-aurora/

Argonne Leadership Computing Facility4

4 Aurora

Peak FP64 Performance
≧ 2 exaFLOPS

Memory
10.9PiB of DDR @ 5.95 PB/s
1.36PiB of CPU HBM @ 30.5 PB/s
8.16PiB of GPU HBM @ 208.9 PB/s

Network
2.12 PB/s Peak Injection BW
0.69 PB/s Peak Bisection BW

Storage
230PB DAOS Capacity
31 TB/s DAOS Bandwidth

Racks - 166
Nodes - 10,624
 CPUs - 21,248
 GPUs – 63,744

Interconnect
HPE Slingshot 11
Dragonfly topology with adaptive routing
Cassini NIC, 200 Gb/s (25 GB/s), 8 per node
Network Switch:
 25.6 Tb/s per switch (64 200 Gb/s ports)
 Links with 25 GB/s per direction

Intel® Data Center GPU
Max Series

4th Gen Intel XEON Max
Series CPU with High
Bandwidth Memory

Platform

HPE Cray-Ex

Argonne Leadership Computing Facility5

Reminder about CPU and GPU programming

• CPU

• Optimized to

reduce

latency

• Good for

serial work

• Relatively

high clock

frequency

From: https://www.nersc.gov/assets/Uploads/ProgrammingModels.pdf

• GPU

• Optimized for

throughput

• Good for parallel

work

• Relatively low

clock frequency

Argonne Leadership Computing Facility6

Reminder about CPU and GPU programming

• CPU+GPU Programming

• High-level principles

• Serial work runs on the CPU

• Parallel work runs on the GPU

• Minimize transferring data between

CPU and GPU

CPU
GPU

Argonne Leadership Computing Facility9

Programming Model Landscape on Aurora

OpenMP w/o target

OpenMP with target

OpenCL SYCL

Kokkos

Raja

Vendor Supported

Programming Models

FORTRAN

C++

C

Community Provided

Programming Models

Python

(Numba,

NumPy, etc.)

Vendor Supported

AI frameworks

PyTorch,

TensorFlow,

JAX,

DeepSpeed,

Horovod

Programming Models
with experimental

support

HIP

+ MPI

Argonne Leadership Computing Facility10

Programming Model Landscape on Aurora

OpenMP w/o target

OpenMP with target

OpenCL SYCL

Kokkos

Raja

Vendor Supported

Programming Models

FORTRAN

C++

C

Community Provided

Programming Models

Python

(Numba,

NumPy, etc.)

Vendor Supported

AI frameworks

PyTorch,

TensorFlow,

JAX,

DeepSpeed,

Horovod

Programming Models
with experimental

support

HIP

+ MPI

• Pragma-based models

• Usually easier to get started

• Less explicit control, lets the compiler

have more control

• Portable to other architectures

Argonne Leadership Computing Facility11

Programming Model Landscape on Aurora

OpenMP w/o target

OpenMP with target

OpenCL SYCL

Kokkos

Raja

Vendor Supported

Programming Models

FORTRAN

C++

C

Community Provided

Programming Models

Python

(Numba,

NumPy, etc.)

Vendor Supported

AI frameworks

PyTorch,

TensorFlow,

JAX,

DeepSpeed,

Horovod

Programming Models
with experimental

support

HIP

+ MPI

• C or C++ frameworks

• Portable to other architectures

• Generally Community-provided instead of vendor-provided

Argonne Leadership Computing Facility12

12 Programming Model Choices by Y1 Aurora Projects +

ECP

OpenMP, 22

SYCL, 23

Kokkos*, 17

AI Frameworks, 20

QUDA, 5

Grid, 5

libCEED, 3 OCCA*,

6

HIP, 3

PETSc, 3

Kokkos-kernels, 1
OpenCL, 1

Raja*, 1

Project Counts

From: “Targeting Applications to First-

Generation Exascale Systems”, Tim Williams,

Feb. 2025

* On top of SYCL

Argonne Leadership Computing Facility13

OpenMP Offload: Overview and Quickstart

Argonne Leadership Computing Facility14

Overview

• Why OpenMP?

– Open standard for parallel programming with support across vendors

– OpenMP runs on CPU threads, GPUs, SIMD units

– C/C++ and Fortran

– Supported by Intel, Cray, GNU, LLVM compilers and others

– OpenMP offload will be additionally supported on Aurora, Frontier, Perlmutter

• Four Important high-level features to express parallelism

– Fork and join thread parallelism

– SIMD parallelism (added in 4.0)

– Device Offload parallelism (added in 4.0)

– Tasking parallelism (added in 3.0)

• Why instead of a C++ framework?

– Easy to get started and trivial to parallelize loops

– The reduction clause simplifies data reduction

Argonne Leadership Computing Facility15

CPU OpenMP parallelism

#pragma omp parallel for private(x) reduction(+:sum)
for(int i=0; i<=num_steps; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }

Distributes iterations to the threadsSpawn threads in a thread team

Argonne Leadership Computing Facility16

GPU OpenMP parallelism

#pragma omp target teams distribute parallel for private(x) reduction(+:sum)
for(int i=0; i<=num_steps; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }

Creates teams of threads in the

target device

Distributes iterations to the threads

Argonne Leadership Computing Facility17

• Target construct: offloads

code and data to the device

and runs in serial on the

device

OpenMP Offload Introduction

CPU
GPU

Transfer data and

execution control

Argonne Leadership Computing Facility18

• Target construct: offloads

code and data to the device

and runs in serial on the

device

• Teams construct: creates a

league of teams, each with

one thread, which run

concurrently on SMs (Nvidia

terminology)

OpenMP Offload Introduction

CPU
GPU

Transfer data and

execution control

Argonne Leadership Computing Facility19

• Target construct: offloads

code and data to the device

and runs in serial on the

device

• Teams construct: creates a

league of teams, each with

one thread, which run

concurrently on SMs (Nvidia

terminology)

• Parallel construct: creates

multiple threads in the teams,

each which can run

concurrently

OpenMP Offload Introduction

CPU
GPU

Transfer data and

execution control

Argonne Leadership Computing Facility20

GPU OpenMP parallelism

#pragma omp target teams distribute parallel for private(x) reduction(+:sum)
for(int i=0; i<=num_steps; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }

Creates teams of threads in the

target device

Distributes iterations to the threads

Argonne Leadership Computing Facility21

OpenMP and data transfer
...

#pragma omp target teams distribute parallel for map(tofrom:a[0:num], b[0:num])

 for (size_t j=0; j<num; j++) {

 a[j] = a[j]+scalar*b[j];

 }

...

Argonne Leadership Computing Facility22

OpenMP and data transfer
...

#pragma omp target teams distribute parallel for map(tofrom:a[0:num], b[0:num])

 for (size_t j=0; j<num; j++) {

 a[j] = a[j]+scalar*b[j];

 }

...

…

host device

a[0:num], b[0:num]

a[0:num], b[0:num]

• Maps a and b to

and from the

device.

• These are

shared and

accessible by all

of the threads on

the GPU.

Argonne Leadership Computing Facility23

OpenMP offload compilers and flags on Aurora

• Intel OpenMP offload compilers are in the default environment on Aurora

• You can swap “-fopenmp-targets=spir64” for “-fopenmp-targets=spir64_gen -Xopenmp-

target-backend "-device pvc” ” for AOT compilation

• https://docs.alcf.anl.gov/aurora/programming-models/openmp-aurora/

Language

MPI Wrapper

Compiler (Underlying

Compiler)

Flag to Turn on

OpenMP Support

and Target CPU

Threads

Additional Flags to Target
GPU Devices

Fortran mpifort (ifx) -fiopenmp -fopenmp-targets=spir64

C mpicc (icx) -fiopenmp -fopenmp-targets=spir64

C++ mpicxx (icpx) -fiopenmp -fopenmp-targets=spir64

Argonne Leadership Computing Facility24

OpenMP on Aurora: Functionality Benchmarks

• OpenMP vs. Offload:

https://github.com/TApplencourt/OvO

• OpenMP Validation and Verification:

https://crpl.cis.udel.edu/ompvv/project/

• Some of the tests are for uncommon
OpenMP directives, but it gives a

general sense that both

implementations are generally passing

• (Part of an upcoming submission to

IWOMP)

C/C++ Fortran

Intel (2025.0) Nvidia (23.9) Intel (2025.0) Nvidia (23.9)

on Aurora on Polaris on Aurora on Polaris

OvO 100% (521/521) 70% (367/521) 100% (389/389) 92% (359/389)

OMPVV-4.5 96% (141/147) 89% (131/147) 95% (99/104) 93% (97/104)

OMPVV-5.0 77% (164/213) 35%(75/213) 66% (85/128) 27% (35/128)

OMPVV-5.1 75% (76/101) 12%(12/101) 60% (17/28) 7% (2/28)

OMPVV-5.2 13% (3/24) 25%(6/24) 80% (4/5) 60% (3/5)

OMPVV-6.0 22% (5/22) 4%(1/22) 0% (0/1) 0% (0/1)

https://github.com/TApplencourt/OvO
https://crpl.cis.udel.edu/ompvv/project/

Argonne Leadership Computing Facility26

OpenMP vs. OpenACC

• OpenACC is not supported on Intel GPUs

• However, a lot of concepts are shared with OpenMP Offload, so OpenMP

Offload can usually be a replacement

• There is an Intel-provided migration tool for OpenACC to OpenMP

• https://github.com/intel/intel-application-migration-tool-for-openacc-to-openmp

Argonne Leadership Computing Facility27

Quickstart

$ cp -r /lus/flare/projects/gpu_hack/openmp .

$ cd openmp

$ mpicxx -fiopenmp -fopenmp-targets=spir64 -o c_test hello.cpp

$ mpiexec -n 1 ./c_test

Number of devices: 6

Hello world from accelerator.

$ mpiexec -n 1 gpu_tile_compact.sh ./c_test

Number of devices: 1

Hello world from accelerator.

	Slide 1: Compiling and Running for HPC Applications
	Slide 2: Agenda
	Slide 3: References
	Slide 4: Aurora
	Slide 5: Reminder about CPU and GPU programming
	Slide 6: Reminder about CPU and GPU programming
	Slide 9: Programming Model Landscape on Aurora
	Slide 10: Programming Model Landscape on Aurora
	Slide 11: Programming Model Landscape on Aurora
	Slide 12: Programming Model Choices by Y1 Aurora Projects + ECP
	Slide 13
	Slide 14: Overview
	Slide 15: CPU OpenMP parallelism
	Slide 16: GPU OpenMP parallelism
	Slide 17: OpenMP Offload Introduction
	Slide 18: OpenMP Offload Introduction
	Slide 19: OpenMP Offload Introduction
	Slide 20: GPU OpenMP parallelism
	Slide 21: OpenMP and data transfer
	Slide 22: OpenMP and data transfer
	Slide 23: OpenMP offload compilers and flags on Aurora
	Slide 24: OpenMP on Aurora: Functionality Benchmarks
	Slide 26: OpenMP vs. OpenACC
	Slide 27: Quickstart

