
www.anl.gov

Tuning MPICH binding options
on Aurora

Colleen Bertoni, Thomas Applencourt, Brian Homerding, Kris Rowe, Abhishek Bagusetty, Nathan Nichols

Argonne Leadership Computing Facility

Argonne Leadership Computing Facility2

Agenda

• Overview of CPU-core binding

• Overview of GPU/tile binding

• Overview of NUMA Memory binding (DDR & HBM)

Refer to: https://docs.alcf.anl.gov/aurora/running-jobs-aurora/#running-mpiopenmpsycl-applications

https://docs.alcf.anl.gov/aurora/running-jobs-aurora/
https://docs.alcf.anl.gov/aurora/running-jobs-aurora/
https://docs.alcf.anl.gov/aurora/running-jobs-aurora/
https://docs.alcf.anl.gov/aurora/running-jobs-aurora/
https://docs.alcf.anl.gov/aurora/running-jobs-aurora/
https://docs.alcf.anl.gov/aurora/running-jobs-aurora/
https://docs.alcf.anl.gov/aurora/running-jobs-aurora/
https://docs.alcf.anl.gov/aurora/running-jobs-aurora/
https://docs.alcf.anl.gov/aurora/running-jobs-aurora/

Argonne Leadership Computing Facility3

(Recap) Know your Node Topology

⚫ Aurora node has dual socket CPUs

⚫ Each socket houses – 3x 128GB PVC GPUs (2x 64GB tiles each)

⚫ Two memory types on SPR CPU socket – 512GB DDR5 & 64GB HM2e

Argonne Leadership Computing Facility4

CPU core binding options for Aurora

✓ Know the topology when running on dual-socket Sapphire Rapids (SPR) CPUs and 2-tile Intel Data

Center Max Series (PVC) GPUs

✓ Cores 0 & 52 on Socket 0 & 1 were reserved for system services

Argonne Leadership Computing Facility5

CPU core binding options for Aurora

✓ Bind MPI processes to the nearest GPU and nearest CPUs for optimal configuration
✓ MPI ranks binding scheme - Separated by Colon (:)
✓ Optimal configuration is to explicitly bind to cores via “--cpu-bind=list:” option for mpiexec so as to

evenly distribute the ranks over the dual sockets of SPR

✓ Most common configuration:

✓ 12 MPI ranks per node

✓ 6 ranks per socket

✓ 1-8 CPU cores/OMP threads per rank

✓ export CPU_BIND_SCHEME="--cpu-bind=list:1-8:9-16:17-24:25-32:33-40:41-48:53-60:61-68:69-76:77-84:85-
92:93-100"

✓ mpiexec -n 12 -ppn 12 ${CPU_BIND_SCHEME} ./EXE

Argonne Leadership Computing Facility6

CPU core binding options for Aurora

✓ export CPU_BIND_SCHEME="--cpu-bind=list:1-8:9-16:17-24:25-32:33-40:41-48:53-60:61-68:69-76:77-84:85-
92:93-100"

✓ mpiexec -n 12 -ppn 12 ${CPU_BIND_SCHEME} ./EXE

Argonne Leadership Computing Facility7

GPU binding options for Aurora
✓ In addition to CPU-core binding, GPU-binding options to MPI-task is important

✓ Optimal setup: To bind MPI-task to closest GPU on each socket.
✓ Socket 0 – GPU 0,1,2 & Socket 1 – GPU 3,4,5

✓ Further, binding to a specific tile (Tile 0 & Tile 1) would yield an optimal configuration

✓ Device discovery of GPUs are controlled by an environment variable ZE_AFFINITY_MASK (similar to
CUDA_VISIBLE_DEVICES)

Argonne Leadership Computing Facility8

GPU binding options for Aurora

✓ Two options to bind GPU-tiles of PVC on Aurora

✓ (a) Using ALCF’s helper script - gpu_tile_compact.sh (added by default to $PATH). More robust

✓ (b) Using MPICH command line option: --gpu-bind=list. Has some limitations

Argonne Leadership Computing Facility9

GPU binding options for Aurora

(gpu_tile_compact.sh)

✓ ALCF has designed a wrapper script to bind (6 GPUs x 2 tile) 12 GPU-tiles to the MPI-ranks by setting the
environment variable ZE_AFFINITY_MASK for each MPI-rank

✓ mpiexec -n 12 -ppn 12 ${CPU_BIND_SCHEME} gpu_tile_compact.sh ./EXE

✓ Such the mapping between MPI
ranks to GPU-tiles is as follows

MPI (Rank 0) → GPU 0 : Tile 0
MPI (Rank 1) → GPU 0 : Tile 1

✓ MPI (Rank 2) → GPU 1 : Tile 0
MPI (Rank 2) → GPU 1 : Tile 1

✓ …
✓ MPI (Rank 10) → GPU 5 : Tile 0
✓ MPI (Rank 11) → GPU 5 : Tile 1

Argonne Leadership Computing Facility10

GPU binding options for Aurora (via gpu-bind=list)

✓ Bind to each tile of PVC explicitly for optimal performance. (Format – GPU_ID.Tile_ID)
✓ export GPU_BIND_SCHEME="--gpu-bind=list:0.0:0.1:1.0:1.1:2.0:2.1:3.0:3.1:4.0:4.1:5.0:5.1"
✓ mpiexec -n 12 -ppn 12 ${CPU_BIND_SCHEME} ${GPU_BIND_SCHEME} ./EXE

✓ (Limitation) Only works with this device hierarchy mode, ZE_FLAT_DEVICE_HIERARCHY=COMPOSITE (default

option on Aurora). Wouldn’t work with ZE_FLAT_DEVICE_HIERARCHY=FLAT mode set for frameworks module

Argonne Leadership Computing Facility11

NUMA memory binding options for Aurora

✓ Each SPR socket on Aurora has 512GB DDR5 and 64GB of HBM2e memory

✓ Optimal configuration is to have each rank be placed closer to DDR5, HBM2e memory banks on each socket (in-
addition to CPU-binding & GPU-binding)

✓ Memory (de)allocations defaults to DDR

✓ Each MPI rank can be
✓ configured to access:

✓ (a) DDR5-only
(slower, but large-capacity)

✓ (b) HBM2e-only
✓ (faster, but limited-capacity)

✓ (c) Both DDR5 & HBM2e
✓ (complex setup via using
✓ libnuma APIs)

Argonne Leadership Computing Facility12

NUMA memory binding options for Aurora

✓ Each SPR socket on Aurora has 512gb DDR5 and 64gb of HBM2e memory
✓ Socket 1 has NUMA nodes with IDS: 0(DDR5) & 2(HBM2e)
✓ Socket 2 has NUMA nodes with IDs: 1(DDR5) & 3(HBM2e)

$ numactl -H | grep -i "MB"
node 0 size: 515524 MB

 node 0 free: 497948 MB
 node 1 size: 514994 MB
 node 1 free: 497013 MB
 node 2 size: 65536 MB
 node 2 free: 65424 MB
 node 3 size: 65536 MB
 node 3 free: 65433 MB

Argonne Leadership Computing Facility13

NUMA memory binding options for Aurora

✓ Each SPR socket on Aurora has 512gb DDR5 and 64gb of HBM2e memory
✓ Socket 1 has NUMA nodes 0(DDR5) & 2(HBM2e)
✓ Socket 2 has NUMA nodes 1(DDR5) & 3(HBM2e)

✓ Using DDR5 only:
export MEM_BIND_SCHEME="--mem-bind=list:0:0:0:0:0:0:1:1:1:1:1:1"

✓ Using HBM2e only:
export MEM_BIND_SCHEME="--mem-bind=list:2:2:2:2:2:2:3:3:3:3:3:3"

✓ Using both DDR5 & HBM2e:
✓ export MEM_BIND_SCHEME="--mem-bind=list:0,2:0,2:0,2:0,2:0,2:0,2:1,3:1,3:1,3:1,3:1,3:1,3"

✓ Each MPI-rank binds to both DDR & HBM memory to its closest memory banks on each socket.
✓ Please note memory doesn’t allocate from DDR to HBM when the size exceeds on DDR.
✓ One would have to explicitly use libnuma APIs to explicitly allocate for both DDR and HBM

Argonne Leadership Computing Facility14

Optimal settings for Aurora

✓ Be very explicit with MPICH binding options for optimal performance on Aurora

✓ The following is the most common configuration: 12 MPI-ranks per node:

✓ export CPU_BIND_SCHEME="--cpu-bind=list:1-8:9-16:17-24:25-32:33-40:41-48:53-60:61-68:69-76:77-84:85-
92:93-100"

✓ export MEM_BIND_SCHEME="--mem-bind=list:0,2:0,2:0,2:0,2:0,2:0,2:1,3:1,3:1,3:1,3:1,3:1,3"

✓ mpiexec -n 12 -ppn 12 ${CPU_BIND_SCHEME} ${MEM_BIND_SCHEME} gpu_tile_compact.sh ./EXE

 (OR)

✓ export GPU_BIND_SCHEME="--gpu-bind=list:0.0:0.1:1.0:1.1:2.0:2.1:3.0:3.1:4.0:4.1:5.0:5.1"
✓ mpiexec -n 12 -ppn 12 ${CPU_BIND_SCHEME} ${MEM_BIND_SCHEME} ${GPU_BIND_SCHEME} ./EXE

✓

	Slide 1: Tuning MPICH binding options on Aurora
	Slide 2: Agenda
	Slide 3: (Recap) Know your Node Topology
	Slide 4: CPU core binding options for Aurora
	Slide 5: CPU core binding options for Aurora
	Slide 6: CPU core binding options for Aurora
	Slide 7: GPU binding options for Aurora
	Slide 8: GPU binding options for Aurora
	Slide 9: GPU binding options for Aurora (gpu_tile_compact.sh)
	Slide 10: GPU binding options for Aurora (via gpu-bind=list)
	Slide 11: NUMA memory binding options for Aurora
	Slide 12: NUMA memory binding options for Aurora
	Slide 13: NUMA memory binding options for Aurora
	Slide 14: Optimal settings for Aurora

