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What is profiling and why?
Proůling is the process of analyzing a program's execution to identify 
performance characteristics and boŵlenecks.

Option of profilers on Aurora

● TAU
● HPCToolKit
● Intel VTune/APS/Advisor
● mpitrace (communication)
● Darshan (I/O)
● Iprof/unitrace
● torch.profiler (Comp & comm)
● DFTracer (I/O)
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● Data loading
● Computation
● Memory access
● Communication.
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What information can PyTorch profiler provide
• Operator Execution Time (CPU time & XPU time)
• Kernel Execution Details (XPU):  The specific compute kernels launched on the device, including their 

duration
• Operator Input Shapes: By setting record_shapes=True
• Stack Traces and Module Hierarchy: Enabling with_stack=True allows the profiler to record the Python 

source code location (file and line number) that invoked each operation. 
• Estimated FLOPs: For certain common operators like matrix multiplication and 2D convolution, the profiler 

can estimate the number of floating-point operations (FLOPs) performed if with_flops=True is set.9 This can 
help in assessing the computational intensity of different parts of the model.

• Execution Timeline (Trace View): Perhaps the most powerful feature for detailed analysis is the ability to 
export a chronological trace of events. 
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Example of using PyTorch Profiler on Aurora

# loading relevant modules
from torch.profiler import ProfilerActivity, profile, record_function

with profile(activities=[ProfilerActivity.CPU, ProfilerActivity.XPU],
                record_shapes=True,
                profile_memory=True, 
                with_stack=True)  as prof: 

with record_function(“data_preprocessing”): #user custom annotation
…..

# portion of the code you would like to 
train(model, loader, epochs=args.epochs, steps_per_epoch = args.steps)

# print function statistics
if rank == 0:

print(prof.key_averages().table(sort_by="cpu_time_total", row_limit=50))

# output timeline trace  (important to have different files for different rank)
os.makedirs(args.trace_dir, exist_ok=True)
prof.export_chrome_trace(f"{args.trace_dir}/torch-trace-{rank}-of-{world_size}.jso
n")

https://docs.pytorch.org/docs/stable/profiler.html
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Timeline trace visualization: https://ui.perfetto.dev/

https://ui.perfetto.dev/
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Case 1: First step large overhead in pipeline parallelism

First step cost is primarily due to consecutive initializing GPU 
kernels from one stage to another
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Case 2: I/O in Megatron-DeepSpeed

(3) Building 
BlendableDataset: main 
time is spent on 
build_indices

Building corpus 
datasets (3s)Building index 

mapping for each 
dataset (1s)

Building 
BlendableDataset
(23s)

Loading a microbatch 
(70ms) - Overlap with 
the compute

The entire Dataset Building process (36s)
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Existing issues for torch.profiler on Aurora

When profiling on Intel XPU backends, enabling ProfilerActivity.XPU can occasionally lead 
to hangs in multi‑process or multi‑node runs. To avoid this issue:

● Single‑Node Profiling: Use activities=[ProfilerActivity.CPU, ProfilerActivity.XPU] and 
collect a full trace on one node (or a single process per node) to capture XPU kernel 
timings safely without multi‑node synchronization issues  .

● Multi‑Node Profiling: For distributed workloads spanning multiple nodes, omit 
ProfilerActivity.XPU and rely solely on CPU events (ProfilerActivity.CPU) to prevent hanging barriers in the 
Kineto profiler’s XPU hooks  .

● ./test_dtensor_1d.py works fine for multiple node with ProfilerActivity.XPU
● ./test_miniGPT.py hangs on 2+ nodes
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DFTracer - A multilevel I/O profiler with application context

https://github.com/LLNL/dftracer.git

● Works with Python applications 
(multiple threads)

● Able to profile I/O in the context 
of application functions

● Able combine with results from 
other tools

● With small overhead 

DFTracer: An Analysis-Friendly Data Flow Tracer for AI-Driven Workflows. 
Devarajan, H., L. Pottier, K. Velusamy, H. Zheng, I. Yildirim, O. Kogiou, W. Yu, A. 
Kougakas, X.-H. Sun, J. S. Yeom, and K. Mohror, SC24: International Conference 
for High Performance Computing, Networking, Storage and Analysis
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Multilevel profiling feature in dftracer
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I/O bottleneck for UNet3D shown through dftracer

num_workers=0
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Performance issue revealed through profiling
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Combining data loading trace with compute trace

torch.profiler trace

dftracer trace
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Current existing issues for dftracer on Aurora

⚠ Aurora‐specific workaround: The POSIX‐level I/O interceptor in DFTracer can hang 
on Aurora’s file system. If you encounter hangs during low‑level POSIX tracing, disable it by 
setting:

export DFTRACER_DISABLE_IO=1

This turns off the problematic POSIX I/O hooks while still allowing higher‑level function and 
MPI‑IO tracing to proceed normally.
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Merging multiple timeline trace
Install utils
pip install git+https://github.com/zhenghh04/pyutils

Merging traces from different ranks

merge_trace --inputs ./torch-trace-0-of-24.json ./torch-trace-12-of-24.json –output torch-trace-combine.json

Merging traces from different profilers (alignment might be needed)

merge_trace –inputs ./torch-trace-0-of-24.json ./trace-0-of-24.pfw –output trace-0-of-24-combine.json
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Hands on examples

git clone -b incite-hackathon-2025 https://github.com/argonne-lcf/GettingStarted
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