
Pytorch profiler for AI
Huihuo Zheng
May 7, 2025

Argonne Leadership Computing Facility

Argonne Leadership Computing Facility2

What is profiling and why?
Proůling is the process of analyzing a program's execution to identify
performance characteristics and boŵlenecks.

Option of profilers on Aurora

● TAU
● HPCToolKit
● Intel VTune/APS/Advisor
● mpitrace (communication)
● Darshan (I/O)
● Iprof/unitrace
● torch.profiler (Comp & comm)
● DFTracer (I/O)

Interconnect
(Slingshot)

D
A

O
S/

Lu
st

re

da
ta

loa
din

g &

ch
ec

kp
oin

tin
g

● Data loading
● Computation
● Memory access
● Communication.

Argonne Leadership Computing Facility3

What information can PyTorch profiler provide
• Operator Execution Time (CPU time & XPU time)
• Kernel Execution Details (XPU): The specific compute kernels launched on the device, including their

duration
• Operator Input Shapes: By setting record_shapes=True
• Stack Traces and Module Hierarchy: Enabling with_stack=True allows the profiler to record the Python

source code location (file and line number) that invoked each operation.
• Estimated FLOPs: For certain common operators like matrix multiplication and 2D convolution, the profiler

can estimate the number of floating-point operations (FLOPs) performed if with_flops=True is set.9 This can
help in assessing the computational intensity of different parts of the model.

• Execution Timeline (Trace View): Perhaps the most powerful feature for detailed analysis is the ability to
export a chronological trace of events.

Argonne Leadership Computing Facility4

Example of using PyTorch Profiler on Aurora

loading relevant modules
from torch.profiler import ProfilerActivity, profile, record_function

with profile(activities=[ProfilerActivity.CPU, ProfilerActivity.XPU],
 record_shapes=True,
 profile_memory=True,
 with_stack=True) as prof:

with record_function(“data_preprocessing”): #user custom annotation
…..

portion of the code you would like to
train(model, loader, epochs=args.epochs, steps_per_epoch = args.steps)

print function statistics
if rank == 0:

print(prof.key_averages().table(sort_by="cpu_time_total", row_limit=50))

output timeline trace (important to have different files for different rank)
os.makedirs(args.trace_dir, exist_ok=True)
prof.export_chrome_trace(f"{args.trace_dir}/torch-trace-{rank}-of-{world_size}.jso
n")

https://docs.pytorch.org/docs/stable/profiler.html

Argonne Leadership Computing Facility5

Timeline trace visualization: https://ui.perfetto.dev/

https://ui.perfetto.dev/

Argonne Leadership Computing Facility6

Case 1: First step large overhead in pipeline parallelism

First step cost is primarily due to consecutive initializing GPU
kernels from one stage to another

Argonne Leadership Computing Facility7

Case 2: I/O in Megatron-DeepSpeed

(3) Building
BlendableDataset: main
time is spent on
build_indices

Building corpus
datasets (3s)Building index

mapping for each
dataset (1s)

Building
BlendableDataset
(23s)

Loading a microbatch
(70ms) - Overlap with
the compute

The entire Dataset Building process (36s)

Argonne Leadership Computing Facility8

Existing issues for torch.profiler on Aurora

When profiling on Intel XPU backends, enabling ProfilerActivity.XPU can occasionally lead
to hangs in multi‑process or multi‑node runs. To avoid this issue:

● Single‑Node Profiling: Use activities=[ProfilerActivity.CPU, ProfilerActivity.XPU] and
collect a full trace on one node (or a single process per node) to capture XPU kernel
timings safely without multi‑node synchronization issues .

● Multi‑Node Profiling: For distributed workloads spanning multiple nodes, omit
ProfilerActivity.XPU and rely solely on CPU events (ProfilerActivity.CPU) to prevent hanging barriers in the
Kineto profiler’s XPU hooks .

● ./test_dtensor_1d.py works fine for multiple node with ProfilerActivity.XPU
● ./test_miniGPT.py hangs on 2+ nodes

Argonne Leadership Computing Facility9

DFTracer - A multilevel I/O profiler with application context

https://github.com/LLNL/dftracer.git

● Works with Python applications
(multiple threads)

● Able to profile I/O in the context
of application functions

● Able combine with results from
other tools

● With small overhead

DFTracer: An Analysis-Friendly Data Flow Tracer for AI-Driven Workflows.
Devarajan, H., L. Pottier, K. Velusamy, H. Zheng, I. Yildirim, O. Kogiou, W. Yu, A.
Kougakas, X.-H. Sun, J. S. Yeom, and K. Mohror, SC24: International Conference
for High Performance Computing, Networking, Storage and Analysis

Argonne Leadership Computing Facility10

Multilevel profiling feature in dftracer

Argonne Leadership Computing Facility11

I/O bottleneck for UNet3D shown through dftracer

num_workers=0

Argonne Leadership Computing Facility12

Performance issue revealed through profiling

Argonne Leadership Computing Facility13

Combining data loading trace with compute trace

torch.profiler trace

dftracer trace

Argonne Leadership Computing Facility14

Current existing issues for dftracer on Aurora

⚠ Aurora‐specific workaround: The POSIX‐level I/O interceptor in DFTracer can hang
on Aurora’s file system. If you encounter hangs during low‑level POSIX tracing, disable it by
setting:

export DFTRACER_DISABLE_IO=1

This turns off the problematic POSIX I/O hooks while still allowing higher‑level function and
MPI‑IO tracing to proceed normally.

Argonne Leadership Computing Facility15

Merging multiple timeline trace
Install utils
pip install git+https://github.com/zhenghh04/pyutils

Merging traces from different ranks

merge_trace --inputs ./torch-trace-0-of-24.json ./torch-trace-12-of-24.json –output torch-trace-combine.json

Merging traces from different profilers (alignment might be needed)

merge_trace –inputs ./torch-trace-0-of-24.json ./trace-0-of-24.pfw –output trace-0-of-24-combine.json

Argonne Leadership Computing Facility16

Hands on examples

git clone -b incite-hackathon-2025 https://github.com/argonne-lcf/GettingStarted

Argonne Leadership Computing Facility17

Acknowledgments

This research used resources of the Argonne Leadership Computing Facility, a
U.S. Department of Energy (DOE) Office of Science user facility at Argonne
National Laboratory and is based on research supported by the U.S. DOE Office of
Science-Advanced Scientific Computing Research Program, under Contract No.
DE-AC02-06CH11357.

