
May 6, 2025

Ensembles and Workflows
Christine Simpson
Data Services & Workflows, ALCF

1

Argonne Leadership Computing Facility3

Ensembles & Workflows
• A workflow is simply any collection of

computational tasks run to achieve a
result

• Workflows can have complex
dependencies, involve many different
applications and/or data movement

• Workflows often include ensembles,
which we will describe as a collection of
tasks running the same application with
similar inputs

• On ALCF machines, queueing policies
usually require workflows and
ensembles to be packed into large jobs
2

tasktasktasktasktasktasktasktasktasktask
tasktasktasktasktask

tasktasktasktasktask

Large Collection of Tasks

tasktasktasktasksims model
training

model
inference

Tasks Generating New Tasks Dynamically

Remote Filesystemdata

task

result

Tasks Folded into Data Flow

tasktasktasktasktask task analysis 2task analysis 1 task analysis 1 task analysis 1 task analysis 1

Complex Task Dependencies

Argonne Leadership Computing Facility3 Argonne Leadership Computing Facility3

Simple Case:
Ensemble PBS job
Run many tasks in one job

• Useful for tasks with similar run
times that have no subsequent
dependencies

• May be sufficient for a small number
of tasks with similar inputs

• Applications launched with
mpiexec that assigns unique nodes
to each task

• Ensemble jobs of multi-node tasks
limited to 1000 tasks on Aurora

• No limit for tasks that use a single
node (or are sub-node)

3

#!/bin/bash -l
#PBS -l select=8
#PBS -l walltime=0:30:00
#PBS -q debug-scaling
#PBS -A datascience
#PBS -l filesystems=home:flare

cd ${PBS_O_WORKDIR}

MPI example w/ multiple runs per batch job
NNODES=`wc -l < $PBS_NODEFILE`

Settings for each run: 2 nodes, 12 MPI ranks per node spread evenly
across cores, total of 4 tasks
NUM_NODES_PER_MPI=2
NRANKS_PER_NODE=12
NDEPTH=8
NTHREADS=1
NTOTRANKS=$((NUM_NODES_PER_MPI * NRANKS_PER_NODE))

Increase value of suffix-length if more than 99 jobs
split —lines=${NUM_NODES_PER_MPI} --numeric-suffixes=1 \
 --suffix-length=2 $PBS_NODEFILE local_hostfile

for lh in local_hostfile*
do
 echo "Launching mpiexec w/ ${lh}"
 mpiexec -n ${NTOTRANKS} —ppn ${NRANKS_PER_NODE} \
 --hostfile ${lh} —depth=${NDEPTH} --cpu-bind depth \
 ./hello_affinity &
done
wait

Argonne Leadership Computing Facility3

Pinning applications to nodes with mpiexec
• mpiexec can be used to pin application to specific nodes with the --hosts or
--hostlist options

• Node (host) names can be pulled from the PBS_NODEFILE during the job runtime

• Use an `&` at the end of the line to launch the process in the background

• Always include wait at the end of the script to ensure it does not return before
background processes complete

4

mpiexec -n 24 —ppn 12 --hostfile ./local_hostfile ./hello_affinity &

mpiexec -n 24 —ppn 12 --hosts $HOST_NAME1 $HOST_NAME2 ./hello_affinity &

Argonne Leadership Computing Facility3

Limitations of Ensemble PBS jobs
• If task run times are varied, PBS ensemble jobs give poor node utilization, e.g.

nodes are not refilled when tasks complete

• Large task ensembles may encounter bottlenecks on the launching node (e.g.
run out of file descriptors) or encounter slow launching times

• Complex dependencies can be hard to manage in a shell script, no
checkpointing functionality, automatic task logs, retries, etc.

• When these issues arise, using a workflow tool is recommended

5

Argonne Leadership Computing Facility3

What is a workflow tool?
Why should you consider using one?

• A workflow tool is a piece of software that orchestrates the
execution of large numbers of tasks on compute resources,
handling dependencies, data flows, and errors/timeouts

• What a workflow tool can do for your workload:

• Run many tasks concurrently and/or one after another
asynchronously across one or many batch jobs

• Manage task dependencies

• Automate error handling and restarts of tasks

• Manage data movement into/out of the file system needed
for tasks

• Many tools can be run on our systems, we will show some
details of how to run Parsl, developed at UChicago and Globus
Labs

Villarreal et al. “Extreme Scale Survey
Simulation with Python Workflows.”

Proceeding for eScience 2021

6

Argonne Leadership Computing Facility3

Parsl
A parallel programming library for Python
• Simple installation with pip

• Apps define how to run tasks

• Python apps call python functions

• Bash apps call external applications

• Workflow contained within memory

• Configuration (assignment of tasks to hardware) set by user,
separate from workflow logic and application definitions

• Apps return futures: a proxy for a result that might not yet
be available

• Apps run concurrently, respecting dependencies

• Community of 70+ developers, several at UChicago & ANL,
part of Globus Labs

7

Argonne Leadership Computing Facility3

Parsl Apps and Futures
How tasks are made and linked

8

• Parsl extends the Python
concurrent.futures
module

• Tasks are created by invoking
apps that return an AppFuture

• A “future” is a proxy for a
result that may or may not yet
exist

• Task dependencies can be
built by passing the AppFuture
from one task to another

 Concurrent Tasks

 Dependent Tasks
@python_app
def double(x):
 v = x * 2
 return v

@python_app
def square(x):
 v = x * x
 return v

 2nd task

v = x * 2
return(v)

1st task
…
d = double(3)

s = square(d.result())

…
print(s.result())

 3rd task

v = x * x
return(v)

@python_app
def double(x):
 v = x * 2
 return v

Argonne Leadership Computing Facility3

Parsl Config
• Parsl assigns tasks to workers for

execution.

• Resources (nodes, GPUS, CPUS)
assigned to workers are configured by
the user.

• Two possible Config types (see Aurora
docs for more):

• “Head-less” Config that launches
workflow from within PBS job (shown
here on the right)

• Externally launched workflow that
sends jobs to PBS from the login
node

• Many other Config options, see Parsl
docs for details

9

tile_names = [f'{gid}.{tid}' for gid in range(6) for tid in range(2)]
start_threads = [1,9,17,25,33,41,53,61,69,77,85,93]
threads_by_tile = [f"{st}-{st+7},{st+104}-{st+111}" for st in start_threads]
cpu_affinity = "list:"+":".join(threads_by_tile)

Get the number of nodes:
node_file = os.getenv("PBS_NODEFILE")
with open(node_file,"r") as f:
 node_list = f.readlines()
 num_nodes = len(node_list)

aurora_single_tile_config = Config(
 executors=[
 HighThroughputExecutor(
 # Ensures one worker per GPU tile on each node
 available_accelerators=tile_names,
 max_workers_per_node=12,
 # Distributes threads to workers in a way optimized for Aurora
 cpu_affinity=cpu_affinity,
 # Increase if you have many more tasks than workers
 prefetch_capacity=0,
 # Options that specify properties of PBS Jobs
 provider=LocalProvider(
 # Number of nodes job
 nodes_per_block=num_nodes,
 launcher=MpiExecLauncher(bind_cmd="--cpu-bind",

 overrides="--ppn 1"),
 init_blocks=1,
 max_blocks=1,
),),],)

Example Config: 1 GPU tile per worker, launch within PBS job

https://docs.alcf.anl.gov/aurora/workflows/parsl/
https://docs.alcf.anl.gov/aurora/workflows/parsl/
https://docs.alcf.anl.gov/aurora/workflows/parsl/
https://docs.alcf.anl.gov/aurora/workflows/parsl/
https://parsl.readthedocs.io/en/stable/
https://parsl.readthedocs.io/en/stable/
https://parsl.readthedocs.io/en/stable/
https://parsl.readthedocs.io/en/stable/

Argonne Leadership Computing Facility3

Parsl Workflow Example

• Load Config object in workflow

• Add app decorators to parsl apps

• Workflow script must wait on results
of all tasks created to ensure they
complete before the script returns

• This example shows @python_app
but compiled executables can be
executed with @bash_app

10

import parsl
from parsl import python_app
from config import aurora_single_tile_config

@python_app
def double(x):
 return 2*x
@python_app
def square(x):
 return x*x

with parsl.load(aurora_single_tile_config):

 # Ensemble of double tasks
 d = []
 for i in range(10):
 d.append(double(i))

 # Dependent ensemble of square tasks
 s = []
 for i in range(10):
 s.append(square(d[i]))

 # Wait on and print results
 for i in range(10):
 print(s[i].result())

Argonne Leadership Computing Facility3

Other tools

11

• There are many other tools that can be used on our systems, please come
talk to us if you need help running your preferred tool

• A common tool at the facility is Balsam which was developed at ALCF

• Balsam uses a database model, applications and tasks are stored in a
centralized database that tracks the progress of tasks

• Balsam has a Python API and command line interface and is optimized
for running MPI applications

• Access to the Balsam database requires permission, email
support@alcf.anl.gov for access

• Workflows tools that have a data management layer can be useful in some
cases: SmartSim, Dragon, and ADIOS2 are all tools with this capability that
run on Aurora.

• Remote workflows that involve remote data movement and triggering can be
enabled by Globus Compute and Globus Flows

https://balsam.readthedocs.io/en/latest/
mailto:support@alcf.anl.gov
https://docs.alcf.anl.gov/aurora/workflows/smartsim/
https://dragonhpc.org/portal/index.html
https://docs.alcf.anl.gov/aurora/workflows/adios/
https://www.globus.org/compute
https://www.globus.org/compute
https://docs.globus.org/api/flows/

Argonne Leadership Computing Facility3

Conclusions
• Small ensembles may be run with PBS ensemble jobs

• Large ensembles and complex workflows should use workflow tools

• Parsl is one such tool that can execute compiled applications or native python
code, handle complex dependencies, refill nodes, and manage work over
multiple PBS jobs.

• Other tools are available, for example database tools like Balsam or tools that
include a data management layer like Dragon or Adios2.

• There are many workflow tools out there and if you need help running your
preferred tool, please let us know

12

Argonne Leadership Computing Facility3

Extra Slides

13

Argonne Leadership Computing Facility3 Argonne Leadership Computing Facility3

Use mpiexec to
launch ensemble of
single-tile tasks
• Use gpu_tile_compact.sh to

assign each application run to a
unique tile

• If your application takes inputs that
need to vary, a wrapper bash script
similar to gpu_tile_compact.sh
can be used to introduce logic to
assign parameters

• Again, this is not an optimal
approach for a large number of tasks
and/or tasks with varying run times

14

#!/bin/bash -l
#PBS -l select=8
#PBS -l walltime=0:30:00
#PBS -q debug-scaling
#PBS -A datascience
#PBS -l filesystems=home:flare

cd ${PBS_O_WORKDIR}

Example to MPI Launch 1 task per tile
Get number of nodes
NNODES=`wc -l < $PBS_NODEFILE`

TASKS_PER_NODE=12
NTASKS=$((NNODES * TASKS_PER_NODE))

NDEPTH=8
NTHREADS=1

This mpiexec call will launch NTASKS copies of the application
Wrapping the application with gpu_tile_compact.sh will ensure
each hello_affinity task will be pinned to one unique GPU
mpiexec -n ${NTASKS} \
 --ppn ${TASKS_PER_NODE} \
 --depth=${NDEPTH} \
 --cpu-bind depth \
 gpu_tile_compact.sh \
 ./hello_affinity

Argonne Leadership Computing Facility3 Argonne Leadership Computing Facility3

Run multiple
MPI application
tasks per node

• Similar to multi-node task
ensemble, but nodes will be
shared by 3 concurrent tasks

• Use ZE_AFFINITY_MASK to
pin task to GPUS

• Again, this is not an optimal
approach for a large number of
tasks with varying run times

15

#!/bin/bash -l
#PBS -l select=4
#PBS -l walltime=0:30:00
#PBS -q debug-scaling
#PBS -A datascience
#PBS -l filesystems=home:flare

cd ${PBS_O_WORKDIR}

Example to MPI Launch 3 tasks per node
Get list of nodes
NODE_LIST=`cat $PBS_NODEFILE`

Run 3 tasks per node, 4 tiles per task
RUNS_PER_NODE=3
Lists of GPU tile ids and CPU cores that go with them
TILES=(0.0,0.1,1.0,1.1 2.0,2.1,3.0,3.1 4.0,4.1,5.0,5.1)
THREADS=(1-8:9-16:17-24:25-32 33-40:41-48:53-60:61-68
69-76:77-84:85-92:93-100)

Loop over nodes
for hn in $NODE_LIST; do
 # Loop over tiles
 for ((i=0; i<RUNS_PER_NODE; i++)); do
 tile_id=${TILES[$i]}
 threads=${THREADS[$i]}
 echo "App on node ${hn} on tile ${tile_id} with threads ${threads}"
 # Launch application on tile/node with mpiexec
 ZE_AFFINITY_MASK=${tile_id} \
 mpiexec -n 4 --ppn 4 —hosts ${hn} \
 --cpu-bind list:${threads} \
 ./hello_affinity &
 done
done
wait

